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Abstract

Recently it was shown that a lattice code with lattice decoding can achieve the
capacity of the additive white Gaussian noise (AWGN) channel. This was achieved by
using a minimum mean-square error (MMSE) scaling and dithering to transform the
AWGN channel into a modulo-lattice additive noise (mod-Λ) channel. Further, Liu
et. al. have shown that lattice decoding can achieve the error exponent of the AWGN
channel using a scaling other than the MMSE scaling at rates above the critical rate
of the channel. We present a simple geometric explanation for this result.

1 Introduction

The additive white Gaussian noise (AWGN) channel was introduced by Shannon in 1948
in his foundational work [1]. In 1959 Shannon further studied lower and upper bounds on
the error exponent achieved by codes for the AWGN channel. These bounds, while quite
tedious to derive, relied on simple geometric arguments. An alternative derivation of these
results, which uses methods developed for general discrete memoryless channels (DMC),
was later provided by Gallager in 1965 [2]. This derivation, while much simpler from an
analytic standpoint lacked much of the geometry that was contained in Shannon’s original
work. Further work by Shannon, Gallager and Berlekamp in 1967 [3, 4] provided a tighter
upper bound on the reliability function for low rates, which was recently improved upon by
Ashikhmin et. al. [5]. The lower and upper bounds coincide for rates above the critical rate
Rcr of the channel and therefore the error exponent is known for rates Rcr < R < C.

These works further show that the sphere packing exponent can be achieved for R ≥ Rcr

by random spherical ensembles, i.e. by a code all of whose codewords are drawn uniformly
over the surface of a sphere. The obtained error exponent assumes optimal maximal likeli-
hood (ML) decoding. The ML decoding region of a codeword consists of all points that lie
closer to that codeword than to any other codeword.

A different line of work aimed at developing structured codes for the AWGN channel using
lattice codes was initiated by de Buda [6]. Recently, it was shown [7] that the use of lattice
codes in conjunction with lattice decoding can achieve capacity on the AWGN channel. One
of the key elements in the transmission scheme involves transforming the AWGN channel into
an unconstrained modulo-lattice (mod-Λ) additive noise channel, having (asymptotically in
the dimension) the same capacity as the original channel. For the resulting channel, if one
uses a lattice code Λc such that Λ ⊂ Λc, then ML decoding amounts to lattice decoding of
Λc.

This transformation (described in Section 6) involves pre-subtraction of a random dither
known to both the transmitter and receiver. A second key ingredient of the transformation
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Figure 1: A few known bounds on the error exponent for the AWGN channel (SNR=10 dB)

is the use of a scaling, i.e. linear estimator at the receiver. The decoder first scales the
received vector by the parameter α and then subtracts off the known dither. It was observed
in [7] that using MMSE scaling minimizes the variance of the noise in the resulting mod-Λ
channel and results in a channel having the same capacity as the AWGN channel. Thus,
MMSE scaling is a natural choice and indeed is unique if one aims for capacity, see [8].

It was further conjectured by the authors of [7] that the mod-Λ transformation, while not
losing in capacity, does lose in error exponent. Recently, however, Liu et. al [9] have shown
that while MMSE scaling is not sufficient to obtain the error exponent for the mod-Λ channel,
a different scaling is nonetheless sufficient to obtain the random coding exponent. Through
some quite rigorous computation the authors of [9] showed that using a rate dependent
scaling, α, the sphere packing exponent can be achieved for R > Rcr.

The goal of the present work is to provide a simple explanation for this result. We start by
analyzing random spherical codes and observe that when working above the critical rate, the
mod-Λ channel appears in a natural way when considering typical error events. We provide
a simple diagram that provides a relationship between the typical error events in the mod-Λ
and AWGN channels via identification of transmitted codewords and a reflection rule leading
to a direct interpretation of the optimal parameters from the derivation of Gallager [10] in
terms of the mod-Λ channel scaling.

2 Preliminaries and Notation

The discrete-time power-constrained additive white Gaussian noise (AWGN) channel is given
by

Y = X + N (1)

where the input satisfies the power constraint 1
n
‖x‖2 ≤ P (n being the blocklength) and

where the noise N is a zero mean Gaussian random variable with variance σ2. The signal-
to-noise (SNR) ratio of the channel is SNR = P/σ2. The capacity of the channel is

C =
1

2
log(1 + SNR). (2)



There are many natural ways to generate random codebook ensembles that asymptotically
achieve capacity. Possible choices are: an i.i.d. Gaussian codebook, a codebook drawn
uniformly over a sphere, as well as a codebook drawn uniformly over the Voronoi region of a
lattice that is “good for quantization” (see [7]). In essence, the codebook distribution should
tend to Gaussianity in an entropy sense. That is, its entropy (for a given power) should
be close to maximal. The error exponent on the other hand is more sensitive to the input
distribution. The error exponent of the AWGN channel for rates above the critical rate is:

Esp(R)
4
=

SNR

4e2R

(

1 + e2R −
(

e2R − 1
)

√

1 +
4e2R

SNR(e2R − 1)

+
1

2
log

(

e2R − SNR(e2R − 1)

2

(
√

1 +
4e2R

SNR(e2R − 1)
− 1

)))

(3)

As shown in [2,11] this exponent may be achieved by a codebook drawn uniformly over the
surface of a sphere1. We note that a Gaussian codebook does not achieve the channel’s error
exponent. We see below that the distinction between Gaussian and spherical distributions
shows up in a dual way in the mod-Λ channel.

We denote the codebook by C, the transmitted codeword as c and any other codeword
as ce. The received vector is y = c + z. Under maximum likelihood decoding we have that
an error occurs when

‖y − ce‖ ≤ ‖y − c‖ (4)

for some other codeword ce. That is, the error probability given that the message c is
transmitted, Pe(c), is simply

Pe(c) = Pr {‖y − ce‖ ≤ ‖y − c‖, for some ce ∈ C} . (5)

We denote by P̄e, the average error probability, averaged over all codewords as well as the
codebook ensemble.

We use the following method due to Gallager [12] to bound the probability of decoding
error. Let R be any region in R

n. Then for any transmitted codeword c we may consider
separately the probability of error when the received vector is in R or in its compliment.
When the received vector, y is in R, we upper bound the probability of error by using a
union bound over all codewords in the codebook. When y is not in R, we upper bound the
probability of error by 1. More formally, we may in general write

Pe(c) = Pr ( error , c + z ∈ R) + Pr ( error , c + z 6∈ R) (6)

≤ Pr ( error , c + z ∈ R) + Pr (c + z 6∈ R) (7)

≤
∑

ce 6=c

Pr (‖y − ce‖ ≤ ‖y − c‖, c + z ∈ R) + Pr (c + z 6∈ R) (8)

4
= Punion(c) + Pregion(c) (9)

where Pregion(c) is the probability that the received vector is not in the region R and Punion(c)
is the sum appearing in (8). Averaging over the code and the ensemble of codes we have
P̄e ≤ Punion(c) + Pregion(c) = Punion + Pregion (since by averaging the probability of error is
independent of the codeword).

1In [2] Gallager starts with a Gaussian distribution but applies expurgation to the same effect.
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Figure 2: A depiction of the general bounding technique (9). (a) The general bound for an
arbitrary region R and (b) the bounds when specialized to a cone of half angle θ

It turns out that with a proper choice of the region R, which is described in the next
section, this bound is tight enough to obtain the best known lower bounds on the error
exponent. The region R can be arbitrary for the above bound to hold. However, for a
random spherical ensemble there is no loss in restricting R to be rotationally symmetric
about the axis that passes through the origin and the codeword. For the remainder of this
paper we will assume that R is rotationally symmetric.

3 Geometric Derivation of Sphere Packing Exponent

In the case of the constrained AWGN channel we take, owing much to Shannon [11], the
region R to be the cone2 of half angle θ with apex at the origin and whose axis passes through
c, where sin θ = exp(−R). We denote this region as Rc(θ). With this choice of angle, the
cone has the same (in an exponential sense) solid angle as the average solid angle of an ML
decoding region. It is easy to show [11] that the probability of a noise vector leaving the ML
decoding region is greater than that of leaving a cone with the same solid angle. It therefore
follows that the average probability of error satisfies,

P̄e≥̇Pr (c + z 6∈ Rc(θ)) .

Thus, in order to show that the sphere packing bound is tight it is sufficient to show that

1. Pr (c + z 6∈ Rc(θ))
.
= e−nEsp(R).

2. Punion ≤̇Pregion for R > Rcr.

Property 2 is easy to prove using the distribution of a random spherical code ensemble,
see [13]. We next compute Pr (c + z 6∈ Rc(θ)) and show that Property 1 holds.

2This form of Gallager’s bound corresponds to Poltyrev’s tangential sphere bound.



Let us decompose the noise into a component normal to the the surface of the sphere at
c, say zy, and its orthogonal complement zy⊥ (see Figure 2). Then,

z = zy · ey + zy⊥

where ey is the unit vector normal to the sphere at c. Since the components of the noise
are independent we may condition on the component zy and integrate over the distribution
of that component. Let y = β

√
nP be the magnitude of the normal component of the noise

and let r(β)
√

nP be the radius of the corresponding spherical cross section of the cone, as
shown in Figure 2. By simple geometry, we have r(β) = (1 + β) tan θ. Then,

Pr(c + z 6∈ Rc) =

∫ ∞

−1

fzy
(β
√

nP ) · Pr
(

‖zy⊥‖ ≥ r(β)
√

nP
)

dβ

Using a Chernoff bound on the norm of a Gaussian vector whose components each have
a variance σ2 we have,

Pr
(

‖z‖ ≥ r(β)
√

nP
)

=̇ exp (−n Eh(r(β)2P/σ2)) (10)

where Eh(µ)
4
= 1

2
(µ − 1 − log µ) if µ ≥ 1 and zero otherwise3 Additionally, we have for a

one dimensional Gaussian

Pr
(

z ≥ β
√

nP
)

=̇ exp (−n Ev(β
2P/σ2)) where Ev(µ) = µ/2

Thus, the probability that the received vector is outside the cone satisfies

Pr (c + z 6∈ Rc) =̇ exp

(

−n min
β

[

Ev(β
2SNR) + Eh(r(β)2 SNR)

]

)

(11)

Finding β that minimizes the exponent of (11) we find that for R > Rcr,

1 + β∗(SNR, θ) =
cos2 θ

2
+

cos θ

2

√

cos2 θ +
4

SNR
(12)

Further, with some simple arithmetic one can show that indeed

Esp(R) = Ev((β
∗)2SNR) + Eh(r(β

∗)2 SNR)

so that Property 1 holds and the sphere packing exponent is the proper exponent for R > Rcr.
Additionally, for all rates above the critical rate the error event is dominated by the event of
leaving a cone at a height of β∗

√
nP . However, the probability for leaving the cone at any

other height is in general smaller than at β∗. It is natural to ask what other regions one can
use in order to derive the sphere packing bound using Gallager’s bounding technique (9).

3Eh(µ) is Poltyrev’s exponent in the sphere packing region.
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Figure 3: A depiction of “valid” regions for the general bounding technique (9) (a) The
general bound for an arbitrary “valid” region. A general region R and a depiction of the
smallest valid region. (b) the bounds when specialized to a sphere that contains the smallest
region.

4 Valid Regions for Geometric Derivation

The tightness of the bound we obtained using the cone Rc(θ) means that for rates above
the critical rate, the error probability of leaving an ML decoding region is exponentially the
same as that of leaving the cone Rc(θ). Thus, the cone approximates4 the ML decoding
region in the error probability analysis for R > Rcr. We now investigate how much freedom
we have in choosing a region that has this property.

We will refer to any region R that yields the sphere packing bound as valid. We would
like to find the “smallest” valid region. It is clear that any region satisfying the following is
valid:

1. R ⊂ Rc(θ).

2. Pr (c + z /∈ R)
.
= Pr (c + z /∈ Rc(θ)).

The first condition ensures that Punion will be no greater for R than for Rc(θ). The second
condition guarantees that Pregion remains exponentially the same for R as it was for Rc(θ).

As previously noted, the cross section of the cone that dominates the error event is
that corresponding to β∗. This means that at other heights we should be able to choose a
“narrower” geometrical body. Nonetheless, at a height β∗ the radius of R has to coincide
with that of Rc(θ) since we cannot hope to improve the sphere packing bound. Thus, R
must be tangent to Rc(θ) at β∗. Further, it is necessary that for any valid region and for
any β we have

fzy
(β) Pr

(

c + z 6∈ R | zy = β
√

nP
)

≤̇ fzy
(β∗) Pr

(

c + z 6∈ Rc | zy = β∗
√

nP
)

(13)

4It is important to note that the tightness of the sphere packing bound does not imply the existence of
good cone packings, and in fact these are known not to exist.
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Now, consider the region that exactly meets (13) for every β. That is, the region that is
parameterized by

Ev(β
2SNR) + Eh(r(β)2 SNR) = Esp(R, SNR)

This region is the smallest valid region, since the probability of leaving any other valid region
is exponentially larger. A depiction of the smallest region can be seen contained in a general
region R in Figure 3 (a) (all are tangent to the cone at β∗).

5 Geometric Derivation Using Spherical Regions

We now consider the possibility of taking R to be a sphere. From the previous section we
know that a valid sphere must be tangent to the cone of half angle θ at β∗ and also contain
the smallest region. In order to make the sphere tangent at β∗ we can simply draw a line
perpendicular to the cone at β∗ and find the point where this line intersects the line passing
through the origin and the transmitted codeword (see Figure 3). We will denote this point
as c/α∗. Using some simple geometry we find that

1

α∗
=

1 + β∗

cos2 θ
=

1

2

(

1 +

√

1 +
4

SNR cos2 θ

)

(14)

and that the radius of this sphere is d =
√

nP/α∗ sin θ. Denote the sphere which is a distance
l from the origin and has a radius d by Rs(l, d). Then, if a valid sphere exists it must be the
sphere just defined

Rs(θ)
4
= Rs(

√
nP/α∗,

√
nP/α∗ sin θ).

It remains to show that Rs(θ) satisfies Property 2, i.e. that it contains the smallest valid
region. This is verified in [13] by using the same method as used for Rc(θ).

It is important to note that α∗ is simply Gallager’s 1+ρ scaled by e−R/SNR. Furthermore,
α∗ is the optimal scaling found in [9] for the mod-Λ channel. Before explaining the connection
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book C and a random dither u is added and the result (mod-Λ) is transmitted through
the additive noise channel. An estimate of the received signal is then formed, the dither
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to the mod-Λ channel we make the following observation. Note that we may rewrite the
received vector as

y = c + z =
c

α
+

(

1 − 1

α

)

c + z =
c

α
+ w

where w is the Gaussian vector with mean (1 − 1/α) c. We can think of transmitting our in-
flated codeword by adding a deterministic vector that enables us to meet our power constraint
and then adding the Gaussian noise. Thus, the sphere packing exponent has a natural inter-
pretation as the exponent of the probability that the scaled codeword plus a deterministic
translation and a Gaussian noise remains in a sphere about the scaled codeword. Alterna-
tively by spherical symmetry this is equivalent to the probability that a random variable
that is uniform over the surface of a sphere plus a Gaussian remains in a sphere about the
scaled codeword. That is,

exp(−nEsp(R))=̇ Pr

(

c

α
+

(

1 − 1

α

)

c + z 6∈ Rs(θ)

)

=̇ Pr

(

c

α
+

[

1 − α

α
b + z

]

6∈ Rs(θ)

)

(15)
where b is the random variable that is uniform over the ball of radius

√
nP . This equivalence

is depicted in Figure 4. We make the final connection to the error probability in the mod-Λ
channel after first briefly reviewing this transmission approach.

Remark: This derivation has a natural interpretation as the error probability for the
AWGN channel using bounded distance decoding of an inflated codebook. That is, the decoder
which decodes to the codeword c if it is the nearest codeword and less than a distance d from
the inflated codeword c/α, where 0 < α ≤ 1. That is, the received vector is decoded to c if
and only if for all ce ∈ C

‖y − c‖ > ‖y − ce‖ and
∥

∥

∥
y − c

α

∥

∥

∥
≤ d (16)

Such a decoder corresponds to this method of bounding since an error is declared if the noise
is not contained in a spherical region about the scaled codebook. This result means that there
is no penalty in the error exponent for using such a region for R > Rcr if one uses the
optimal scaling.

6 Modulo Lattice Additive Noise Channel

We briefly review the lattice transmission approach proposed in [7]. Let Λ be an n-dimensional
lattice whose fundamental Voronoi region V has second moment P (normalized per dimen-



sion). Let u be the random variable (dither) uniformly distributed over V. The mod-Λ
transmission scheme is given by,

• Transmitter: The input alphabet is restricted to V. For any v ∈ V, the encoder sends:

x = [v + u] mod Λ. (17)
• Receiver: The receiver computes

y′ =

[

y − 1

α
· u
]

mod Λ/α. (18)

The resulting channel is a modulo lattice additive noise channel described by the following
lemma [14] :

Lemma 1 The channel from v to y′ defined by (1),(17) and (18) is equivalent in distribution
to the channel

y′ =

[

1

α
· v + z′

]

mod Λ/α with z′ =
1 − α

α
· u + z (19)

Taking an MMSE scaling α = SNR
1+SNR

results in a mutual information satisfying

I(v;y) ≥ 1

2
log(1 + SNR) − 1

2
log 2πeG(Λ) where G(Λ) =

1

n

∫

V
‖x‖2dx

|V |1+2/n
(20)

is the normalized second moment of Λ. Thus, the gap to capacity may be made arbitrarily
small by taking a lattice Λ such that G(Λ) is sufficiently close to 1/(2πe).

We observe that the noise z looks very much like the effective noise appearing in (15).
Note that the random vectors b and u have the same second moment but while b is spherical,
u is uniform over V. Thus, one could hope that if V is “spherical enough” then it could be
approximated well by b. That is, define the channel

y′′ =

[

1

α
· v + z′′

]

mod Λ/α with z′′ =
1 − α

α
· b + z (21)

We would like to have Λ such that the error exponents of the channels (19) and (21) are the
same. It is shown in [7] that such lattices do indeed exist and following [7] we refer to such
a lattice as “Rogers’ good”. Such lattices have Voronoi regions that are close to spherical in
a much stronger sense than just having a good normalized second moment. This necessity
is similar to the fact that a spherical codebook is superior to a Gaussian codebook in the
power constrained AWGN channel.

We may now bound the error exponent of the channel (21) by using Gallager’s technique
(9) as before. It is easy to see that Pregion is precisely (15). Further, it is easy to show that,
as before, the union bound Punion is exponentially no greater than Pregion for R > Rcr [13].
Thus, it follows that the mod-Λ scheme may achieve the sphere packing error exponent for
these rates.

Returning to the last section we can easily see by identifying transmitted codewords
of the AWGN and mod-Λ channels that the error exponents for R > Rcr are the same.
Examining Figure 4 (b) we can interpret the center of Rs(θ), c/α, as the selected codeword
in the mod-Λ channel and Rs(θ) as the Voronoi of the codeword. Thus, the dither simply
translates c/α to a corresponding codeword of a spherical code. Further, to achieve the error
exponent in the mod-Λ channel it is essential that the self noise be virtually spherical and
not Gaussian, much like the distribution of codewords in the AWGN channel. This analysis
also can be extended to low rates [13] giving a similar interpretation to the results of Liu [9].
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