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Abstract— Let {(Xi, Yi)}∞i=1 be a sequence of pairs of ran-
dom variables, and let S be a bounded stopping time with
respect to {Xi}∞i=1. We propose the problem of finding a
stopping time T with respect to {Yi}∞i=1 that optimally tracks
S in the sense that T minimizes the average reaction time
E(T − S)+ while keeping the false-alarm probability P(T < S)
below a given threshold α.

This problem has applications in many different areas. In
this paper we present an application related to communication
over a channel with noisy feedback.

I. INTRODUCTION

Consider a sensor that monitors the seismic activity of a
volcano and sequentially sends the data to a remote analyzer.
The analyzer, by observing only a noisy version of the
collected data, has to raise an alarm as soon as an eruption is
imminent. What is the loss in “forecast precision” incurred
because of the noise? If the noisy data the analyzer receives
is almost independent of the one obtained by the sensors, the
analyzer will raise spurious or late alarms most of the time.
On the other hand, if the analyzer receives the same data as
the sensor, “optimal forecasting” may be possible.

The above situation provides a motivation for the follow-
ing tracking stopping time problem. Let {(Xi, Yi)}∞i=1 be
an arbitrary sequence of pairs of random variables, where
the (Xi, Yi)’s take values in some finite alphabet X × Y .
Suppose that Alice observes {Xi}∞i=1 and that she chooses
a stopping time S with respect to {Xi}∞i=1.1 Having access
only to {Yi}∞i=1, what is the best stopping time T Bob can
find in order to minimize the expected delay E(T − S)+

while ensuring the probability of false-alarm P(T < S) to
be below a certain threshold α ∈ [0, 1]?2 We assume that
Bob knows the distribution of {(Xi, Yi)}∞i=1 and the stopping
rule S – but not the realizations of S. In the language of the
above example, Alice and Bob represent the sensor and the
analyzer, respectively, S the optimal time to raise an alarm
given perfect observations, and T the optimal time to raise
an alarm given noisy observations.

Another example where a stopping time needs to be
tracked arises in the context of communication with feed-
back. It is well known that the presence of a noiseless
feedback link allows to increase reliability given a certain
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1An integer-valued random variable S is called a stopping time with
respect to a sequence of random variables {Xi}∞i=1 if, conditioned on
{Xi}n

i=1, the event {S = n} is independent of {Xi}∞i=n+1 for all n ≥ 1.
2We use x+ to denote max{0, x}.

communication delay (see, e.g., [1]). However, to take advan-
tage of feedback, variable length codes are often necessary.
The archetype example is communication with feedback over
a binary erasure channel with erasure probability ε ∈ (0, 1)
of a 1-bit message m ∈ {0, 1} (see, e.g., [2, Prob. 2.10]).
On the one hand, any block coding strategy yields a strictly
positive error probability. On the other hand, the variable
length strategy of sending the same bit until a non-erasure
occurs yields error free communication at a rate equal to
capacity. Now suppose the feedback link is a binary erasure
channel with crossover probability p ∈ (0, 1). Because of the
noise in the feedback link, the first non-erased output symbol
may not be recognized as such by the encoder. Hence the
problem of synchronizing the transmitter and the receiver
arises from the encoder observing through feedback only a
noisy version of the symbols received by the decoder.

Instead of treating the synchronization issue resulting from
the noisy feedback channel, let us consider the simpler
problem of finding the minimum delay needed by the encoder
to realize that the decoder has made a decision. In terms of
our generic problem of tracking a stopping time, Alice and
Bob represent now the decoder and the encoder, respectively.
The sequence {Xi}∞i=1 corresponds to the symbols fed into
the feedback channel, whereas {Yi}∞i=1 corresponds to the
output of the feedback channel. The stopping time S is the
first time the decoder receives a non-erasure, and T the time
the encoder stops retransmission. Here E(T−S)+ represents
the delay it takes the encoder to realize that the decoder has
made a decision, and we aim to minimize this delay given
that the false-alarm probability P(T < S) is kept below a
certain threshold α.

The tracking stopping time problem as defined above
appears naturally in many different areas such as detection,
forecasting, and communication. Somewhat surprisingly, and
to the best of our knowledge, this problem does not appear
in the literature.

This paper is organized as follows. In Section II, we
formally define the problem of tracking a stopping time
and provide an algorithmic solution to it. In Section III,
we present two examples, one of which is the problem of
communication over a binary erasure channel with noisy
feedback described above. For each application, we derive a
lower bound on the smallest reaction delay E(T −S)+ given
that the false-alarm probability P(T < S) is kept below a
certain threshold α. Section IV contains concluding remarks.

II. PROBLEM FORMULATION

Given the sequences {Xi}∞i=1 and {Yi}∞i=1, a stopping
time S with respect to {Xi}∞i=1, and the false-alarm level



α ∈ [0, 1], we aim to find

β(α) , min
T :P(T<S)≤α

E(T − S)+ (1)

where the minimization is over all stopping times T with
respect to {Yi}∞i=1. Throughout the paper, we assume that
S is bounded, i.e., there exists S0 ∈ N such that P(S ≤
S0) = 1. Without loss of optimality, we restrict the T ’s to
be bounded by S0 as well.

Note that the minimization problem (1) is a convex opti-
mization problem since {T : P(T < S) ≤ α} is convex and
since E(T − S)+ is convex with respect to T .3 Therefore,
the Lagrangian formulation yields

β(α) = max
λ≥0

min
T

(Jλ(T )− λα)

where Jλ(T ) , E(T − S)+ + λP(T < S) (see, e.g., [3]).
In Sections II-A and II-B we compute Jλ(T ) for determin-

istic and non deterministic stopping times T , respectively.

A. Deterministic Stopping Times

An element in Y∗ will be denoted either by y or by yk,
depending on whether we want to emphasize the length of the
sequence or not.4 A stopping time is said to be deterministic
if P(T = k|Y k = yk) ∈ {0, 1} for all yk ∈ Y∗ and k ≥ 1.
To any deterministic stopping time T , we associate a unique
|Y|-ary tree5 T having each node specified by some yk ∈ Y∗,
where ρyk represents the vertex path from the root ρ to the
node. The depth of a node yk ∈ T is defined as l(yk) , k.
The tree consisting only of the root is the trivial tree. A node
yk ∈ T is a leaf if P(T = k|Y k = yk) = 1. We denote by
L(T ) the leaves of T and by I(T ) the intermediate (or non-
terminal) nodes of T . The notation T (T ) is used to denote
the stopping time T induced by the tree T . Given a node
y in T , let Ty be the subtree of T rooted in y. The next
example illustrates these notations.

Example 1. Let Y = {0, 1} and S0 = 2. The tree T depicted
in Figure 1 corresponds to the deterministic stopping time T
taking value one if Y0 = 1 and value 2 if Y0 = 0. The
sets L(T ) and I(T ) are given by {00, 01, 1} and {ρ, 0},
respectively. The subtree T0 of T consists of the nodes
{0, 00, 01}. The subtree Tρ is the same as T . ♦

For a given stopping rule S, we now describe an algorithm
constructing a sequence of stopping times {T (T m)}M

m=0

and Lagrange multipliers {λm}M
m=0 with the following two

properties. First, the T m’s and λm’s are ordered in the
sense that T M ⊂ T M−1 ⊂ . . . ⊂ T 0 and 0 = λM ≤
λM−1 ≤ . . . ≤ λ1 ≤ λ0 = ∞.6 Second, for any m ∈
{0, . . . ,M} and λ ∈ (λm, λm−1] the tree T m−1 minimizes
Jλ(T ) , Jλ(T (T )) among all deterministic stopping times.

3Given δ ∈ [0, 1], the convex combination of two stopping times T1

and T2, denoted by T = δT1 + (1− δ)T2, is obtained as follows. Let U
be a random variable uniformly distributed within the interval [0, 1], and
independent of T1 and T2. By definition, the stopping time T equals to T1

if U ≤ δ and equals to U2 if U > δ.
4The set Y∗ represents the set of all finite sequences over Y .
5A tree is |Y|-ary if all its nodes have either zero or exactly |Y| children
6The symbol ⊂ denotes inclusion, not necessarily strict.
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Fig. 1. The tree T corresponding to a stopping time bounded by S0 = 2.

The algorithm builds upon ideas from the CART algorithm
for the construction of classification and regression trees [4].
The remainder of this section adapts the arguments in [4,
Chapter 10] to the problem at hand.

Given a stopping time T represented by its |Y|-ary tree
T , we expand Jλ(T ) as

Jλ(T ) =E(T − S)+ + λP(T < S)

=
∑

y∈L(T )

P(Y = y)
(
E

(
(l(y)− S)+|Y = y

)
+ λP

(
S > l(y)|Y = y

))
=

∑
y∈L(T )

b(y) + λa(y)

=
∑

y∈L(T )

Jλ(y),

where b(y) , P(Y = y)E
(
(l(y) − S)+|Y = y

)
, a(y) ,

P(Y = y)P(S > l(y)|Y = y), and Jλ(y) , b(y) + λa(y).
We extend the definition of Jλ(·) to subtrees of T by setting
Jλ(Ty) ,

∑
γ∈L(Ty) Jλ(γ). With this definition we have

Jλ(Ty) =
{

Jλ(y) if y ∈ L(T ),∑
γ∈Y Jλ(Tyγ) if y ∈ I(T ).

For a given λ ≥ 0 and T define (if it exists) T (λ) ⊂ T
to be the subtree of T such that Jλ(T (λ)) ≤ Jλ(T ′) for all
subtrees T ′ ⊂ T , and such that T (λ) ⊂ T ′ for all subtrees
T ′ ⊂ T satisfying Jλ(T (λ)) = Jλ(T ′). In words, among
all subtrees yielding a minimal cost for a given λ, the tree
T (λ) is the smallest. In the sequel T (λ) will be said to be
optimal with respect to λ and T .
Remark: Note that Ty(λ) is different from (T (λ))y . Indeed,
Ty(λ) refers to the optimal subtree of Ty with respect to λ,
whereas (T (λ))y refers to subtree rooted in y of the optimal
tree T (λ).

Given a |Y|-ary tree T and a λ ≥ 0, the following lemma
shows that T (λ) always exists and characterizes T (λ) and
Jλ(T (λ)) using dynamic programming.

Lemma 1. Given a |Y|-ary tree T and λ ≥ 0, starting with
the root node recursively compute

Jλ(Ty(λ)) = min{Jλ(y),
∑
γ∈Y

Jλ(Tyγ(λ))},



and recursively construct

Ty(λ) =
{
{y} if Jλ(y)≤

∑
γ∈Y Jλ(Tyγ(λ))

{y} ∪γ∈Y Tyγ(λ) else.

The optimal tree T (λ) and the corresponding cost Jλ(T (λ))
are given by Jλ(Ty(λ)) and Ty(λ) evaluated at y = ρ.

Proof: By induction on the depth of the tree starting
from the root.

From the structure of the cost function Jλ(·), the larger
the value of λ, the higher the penalty on the error probability.
Therefore one expects that the larger the λ the “later” the
optimal tree T (λ) will stop. Indeed, Lemma 2 states that
the tree corresponding to the optimal stopping time of a
smaller λ is nested into the tree corresponding to the optimal
stopping time of a larger λ. In other words, if λ ≤ λ̃, in order
to find T (λ) we can restrict our search to subtrees of T (λ̃).

Lemma 2. Given a tree T , if λ ≤ λ̃ then T (λ) ⊂ T (λ̃).

Proof: Note first that
∑

γ∈Y a(yγ) ≤ a(y) and∑
γ∈Y b(yγ) ≥ b(y). Hence if T (λ̃) = {ρ} then T (λ) =

{ρ}. The result follows now by induction on the depth of
the tree and using Lemma 1.

The next theorem represents a key result. Given a tree T ,
this theorem characterizes the smallest value λ can take for
which T (λ) = T . In the sequel we use a(Ty) to denote∑

γ∈L(Ty) a(γ) and b(Ty) to denote
∑

γ∈L(Ty) b(γ).

Theorem 3. For a non trivial tree T , define for any inter-
mediate node y ∈ I(T )

g(y, T ) ,
b(Ty)− b(y)
a(y)− a(Ty)

.

We have

inf{λ ≥ 0 : T (λ) = T } = max
y∈I(T )

g
(
y, T

)
.

Proof: Let T be a non trivial tree. We have

g(y, T ) =
Jλ(Ty)− λa(Ty)− Jλ(y) + λa(y)

a(y)− a(Ty)

=
Jλ(Ty)− Jλ(y)
a(y)− a(Ty)

+ λ.

An easy computation reveals that a(Ty) ≤ a(y), hence the
following implications hold:

g(y, T ) ≤ λ ⇐⇒ Jλ(y) ≥ Jλ(Ty)
g(y, T ) < λ ⇐⇒ Jλ(y) > Jλ(Ty) .

Therefore, if maxy∈I(T ) g(y, T ) < λ then

Jλ(y) > Jλ(Ty) (2)

for all y ∈ I(T ).
We first show by induction that if

λ > max
y∈I(T )

g(y, T )

then T (λ) = T . Consider first a subtree of T having depth
one and rooted in y, say. Since Jλ(y) > Jλ(Ty), we have

λ3 λ2 λ1

· · · T 2 T 1 T 0

λ

Fig. 2. For all i ∈ {0, 1, . . . , M − 1} the tree T i is the smallest tree
minimizing the cost Jλ(·) for any λ ∈ (λi+1, λi].

Ty(λ) = Ty by (2). Now consider a subtree of T with
depth d, rooted in a different y, and assume the assertion
to be true for all subtrees of T with depth up to d − 1. In
order to find Ty(λ) we use Lemma 1 and compare Jλ(y)
with

∑
γ∈Y Jλ(Tyγ(λ)). Since Tyγ is a subtree of T with

depth less than d, we have Tyγ(λ) = Tyγ by the induction
hypothesis. Therefore∑

γ∈Y
Jλ(Tyγ(λ)) =

∑
γ∈Y

Jλ(Tyγ) = Jλ(Ty),

and since Jλ(Ty) < Jλ(y) by (2), we have Ty(λ) = Ty

by Lemma 1, which concludes the induction step. Hence we
proved that if maxy∈I(T ) g(y, T ) < λ, then T (λ) = T .

Second, suppose

λ = max
y∈I(T )

g
(
y, T

)
.

In this case there exists y ∈ I
(
T

)
such that Jλ

(
Ty

)
=

Jλ(y). We consider the cases when Tyγ(λ) and Tyγ are the
same for all γ ∈ Y and when they differ for at least one
γ ∈ Y . If Tyγ(λ) = Tyγ for all γ ∈ Y then∑

γ∈Y
Jλ

(
Tyγ(λ)

)
= Jλ

(
Ty

)
= Jλ(y),

and thus T (λ) 6= T by Lemma 1. If Tyγ(λ) 6= Tyγ for at
least one γ ∈ Y then T (λ) 6= T again by Lemma 1.

Finally, when λ < maxy∈I(T ) g
(
y, T

)
then T (λ) 6= T

follows from the previous case and Lemma 2.
Let T 0 denote the full tree of depth S0. Starting with

λ0 = ∞, for m = 1, 2, . . . recursively define

λm , inf{λ ≤ λm−1 : T m−1(λ) = T m−1 }

with λ1 , ∞ if the set over which the infimum is taken is
empty. Hence, for two consecutive transition points λm and
λm+1 we have T (λ) = T (λm) for all λ ∈ (λm+1, λm] as
shown in Figure 2.

The following corollary is a consequence of Lemma 2 and
Theorem 3.

Corollary 4. For m = 1, 2, . . .

T m = T m−1(λm) = T m−1 \
⋃

y∈I(T m−1):

g(y,T m−1)=λm

D(T m−1,y)

λm = max
y∈I(T m−1)

g(y, T m−1)

where D(T ,y) , Ty \ {y} denotes the descendants of y
in T and where T 0 is the full tree of depth S0. The above
iteration stops at m = M with T m = {ρ}.



B. Randomized Stopping Times

So far we have imposed T to be a deterministic stopping
time. We now remove this restriction and allow T to be
randomized. A randomized stopping time is such that to
each node y ∈ T̃ is associated a weight given by the
stopping probability P(T = k|Y k = yk, T ≥ k) ∈ [0, 1].
The leaf nodes have weights equal to 1, whereas the non-
terminal nodes have weights in [0, 1). This generalizes the
deterministic stopping times where the leaf nodes have
weight equal to 1 and the intermediate nodes weights equal
to 0.

One can show the following lemma (see, e.g., [5]):

Lemma 5. Any bounded randomized stopping time T̃ can
be written as a convex combination of bounded deterministic
stopping times. �

Theorem 6. The function β(α) is convex and piecewise
linear with the set of break-points {(αm, βm)}M

m=0 given
by αm = P(T (T m) < S) and βm = E(T (T m)− S)+.7

Proof: From Lemma 6, the cost Jλ(T̃ ) of a randomized
stopping time T̃ can be written as the convex combination
of costs of non-randomized stopping times, i.e.,

Jλ(T̃ ) =
∑
T

pT Jλ(T ) (3)

with pT ≥ 0 and
∑
T pT = 1. From (3) one deduces that the

set of achievable pairs
(
P(T < S), E(T − S)+

)
is convex.

Consider now two consecutive pairs of achievable points
(αm−1, βm−1) and (αm, βm). On the one hand, the segment
connecting these two points is achievable by convexity.
On the other hand, this segment has slope −λm since
Jλm(T m) = Jλm(T m−1). Suppose there exists a stopping
time T̃ yielding a point (α, β) below the line carried by that
segment. Then Jλm

(T̃ ) < Jλm
(T m), a contradiction by (3)

and the definition of T m.

slope −λ1

S0

1

slope −λM−1

E(
T
−

S
)+

P(T < S)

Fig. 3. Optimal operating points in the
`
P(T < S), E(T − S)+

´
plane.

7β(α) is defined in (1).

Figure 3 illustrates a typical shape of β(α). Any point
on β(α) that is not a break point can be achieved by a
randomized stopping time given by the convex combination
of two deterministic stopping times T m and T m+1. From
Corollary 4 and Theorem 6 we deduce Algorithm 1 below
that fully characterizes β(α) by computing its break-points.

Algorithm 1 Compute the break-points {αm, βm}M
m=0 of

β(α).
T 0 ⇐ full tree of depth S0

λ0 ⇐∞
m ⇐ 0
repeat

m ⇐ m + 1
λm ⇐ maxy∈I(T m−1) g

(
y, T m−1

)
T m ⇐ T m−1 \

⋃
y∈I(T m−1):

g(y,T m−1)=λm

D(T m−1,y)

αm ⇐ P(T (T m) < S)
βm ⇐ E(T (T m)− S)+

until T m = {ρ}

An analytical expression for β(α) is hard to obtain in
general. Nevertheless, from Theorem 6 one can lower bound
β(α) as

β(α) ≥ β(0) + αβ′(0+) (4)

where β′(0+) denotes the right derivative of β at α = 0
(which exists by piecewise linearity of β(α)). By Corollary 4,
if λ1 < ∞ then β(0) is achieved by the full tree T 0, and,
if λ1 = ∞, β(0) is achieved by T 1 which is a strict subtree
of T 0. Hence (4) can be written as

β(α) ≥ β(0)− α min{λ1, λ2}. (5)

III. EXAMPLES

In this section, we consider two examples and, applying
(5), we get simple analytical bounds on β(α).

Example 2. Let {Xi}∞i=1 be i.i.d. Bernoulli( 1
2 ) and let

{Yi}∞i=1 represent the observation of the Xi’s through a
binary symmetric channel with crossover probability p ∈
(0, 1

2 ). Consider the stopping time S defined as

S ,

{
1 if X1 = 1
S0 else.

For S0 = 2, the tree corresponding to this (deterministic)
stopping time is depicted in Figure 1.

Since p ∈ (0, 1
2 ), it is clear that whenever T is not the

full tree of depth S0, we have P(T (T ) < S) > 0, hence

β(0) = E(T (T 0)− S)+ =
1
2
(S0 − 1).

From Corollary 4 an easy computation yields

λ1 =
1− p

p
(S0 − 1),



and, using (5), we get

β(α) ≥ (S0 − 1)
(1

2
− α

1− p

p

)
. (6)

Let us comment on (6). Consider any two correlated se-
quences {Xi}∞i=1 and {Yi}∞i=1 and a stopping time S with
respect to the Xi’s. Intuition tells us that there are two factors
that affect β(α). The first is the correlation between the
Xi’s and Yi’s, in the above example given by the crossover
probability p of the observation channel. The lower the
correlation, the higher β(α) will be. The second factor
is the “variability” of S, and might be characterized by
the difference in terms of depth among the leaves having
large probability to be reached. In the above example the
“variability” might be captured by S0, since with probability
1/2 a leaf of depth 1 is reached, and with probability 1/2 a
leaf with depth S0 is attained. ♦

Example 3. We consider 1-bit message feedback commu-
nication when the forward and the feedback channels are
binary erasure channels with erasure probabilities ε and p,
respectively. We refer the reader to Section I for the general
problem setting. We use the following simple transmission
scheme (which is optimal in the case of noiseless feedback).
The decoder keeps sending 0 over the feedback channel until
time S, the first time a non-erasure occurs or S0 time units
have elapsed. From that point on, the decoder sends 1. The
encoder keeps sending the message bit it wants to deliver
until time T , the first time it receives a 1 from the feedback
channel or S0 time units have elapsed. S0 plays here the role
of a “time-out”.

Let us focus on β(α). One can show that λ1 = ∞ and
therefore the bound (5) becomes β(α) ≥ β(0)−αλ2, where
λ2 = maxy∈I(T 1) g

(
y, T 1

)
from Corollary 4. A somewhat

involved computation yields

β(α) ≥
(

p

1− p
− ε1−S0α

)
(1 + o(1)) (7)

as S0 →∞.
The delay β(α) is interpreted as the time it takes the

encoder to realize that the decoder has made a decision.
Equation (7) relates this delay to the channel parameters ε
and p, the probability α of stopping retransmission too early,
and the value of the “time-out” S0. For the communication
scheme considered here, there are two events leading to
decoding errors. The event {XS0 = 0}, indicating that only
erasures were received by the decoder until time S0, and
the event {T < S}, indicating that the encoder stopped
retransmission before the decoder received a non erasure. In
both cases the decoder will make an error with probability

1/2. Hence the overall probability of error P(E) can be
bounded as

max{α, εS0} ≤ 2P(E) ≤ α + εS0 .

It is then reasonable to choose S0 = log α
log ε , i.e., to scale S0

with α so that both sources of errors have the same weight.
This results in a delay of

β(α) ≥
(

p

1− p
− ε

)
(1 + o(1))

as α → 0.
Now suppose that the communication rate R is computed

with respect to the delay from the time communication starts
until the time the encoder realizes that the decoder has
made a decision, i.e., ES + E(T − S)+ = E(max{S, T}).
We conclude that the “send until a non-erasure” strategy
asymptotically achieves a rate that is upper bounded as

R ≤ 1
1

1−ε + p
1−p − ε

.

Note that when ε < p/(1 − p), our bound is strictly below
the capacity of the binary erasure channel 1 − ε. Hence
1/(1+ε) represents a critical value for the erasure probability
p of the feedback channel above which the “send until non-
erasure” strategy is strictly suboptimal. Indeed there exist
block coding strategies, making no use of feedback, that
(asymptotically) achieve rates up to 1− ε. ♦

IV. CONCLUSION

We introduced the tracking stopping time problem. This
problem asks for the “closest” stopping time T to a given
stopping time S based on noisy observations of the data over
which S is defined. We provided a solution for the case of
bounded stopping times defined over discrete time processes
taking values in a finite alphabet.
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