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Abstract— For Orthogonal Frequency-Division Multiplexing
(OFDM) systems, Peak to Average Power Ratio (PAPR) can be
a major impediment to efficient transmission due to the need to
use inefficient highly linear amplifiers. This paper presents an
iterative algorithm to reduce the PAPR of a low-power OFDM
system by 3 dB at a clipping probability of 10−2, and over 5 dB
for 10−5 with asymptotically no loss in code rate for low signal to
noise ratios (SNR). The reduced PAPR allows the system to use
a more efficient form of linear amplifier, for an overall reduction
in transmitter power consumption by over a factor of three at
low SNR. In addition, the algorithm does not require any side
information to be transmitted to the receiver to allow decoding.

I. INTRODUCTION

From a communications standpoint, the goal of the trans-
mitter is to maximize the reliable data rate for a given transmit
power, or equivalently, minimize the energy required per
transmitted bit. An amplifier will saturate if the instantaneous
output value is too high, however, so peak output power is
also an important constraint. Using a multicarrier modulation
scheme such as OFDM tends to produce output signals with
a high PAPR. This negatively affects amplifier efficiency by
requiring the the average signal power to be scaled to prevent
saturation, lowering the SNR at the receiver. Because of their
low efficiency, linear amplifiers can consume a significant
fraction of the total transmitter power consumption.

We define an OFDM symbol as the bandlimited time series
resulting from the inverse Fourier transform of N complex
values. Each value is a frequency bin, and is typically chosen
from a constellation such as 16-QAM. The peak of an OFDM
symbol is the largest instantaneous power of the bandlimited
time signal, while the average is over the entire time signal.
Thus 0 dB PAPR indicates a constant amplitude time signal.

Many strategies have been proposed to reduce the PAPR
of an OFDM or other multicarrier signal, which either try to
shape the signal while encoding the bits, or after the encoding
has been performed. Performing the PAPR reduction while
encoding has the potential of greatly decreasing the PAPR of
the resulting OFDM time signal, but designing good codes that
have low PAPRs is difficult without an excessive reduction in
the achievable data rate. For example, Complementary Golay
codes can limit the PAPR to only 3 dB [1], [2], but the code
rate falls to zero rapidly as the length of the OFDM symbol
increases. It should be possible to limit the PAPR to ln N for a
length N OFDM symbol without losing any appreciable code
rate [3]. For N = 128, this corresponds to a PAPR of no more
than 16 dB, but no known codes exist.

Altering the OFDM signal after encoding typically leads to
more modest reductions in the PAPR. These algorithms can
have relatively small losses in data rate and low complexity
while retaining good error correcting performance. For exam-
ple, clipping [4] or other nonlinear operations [5] can reduce
the dynamic range of the time signal. At the expense of some
code rate to transmit additional information to the receiver, it
is also possible to cancel peaks [6], introduce offsets [7], or
add dummy bits [8], [9] into selected frequency bins.

In this paper, we describe an algorithm to reduce the PAPR
for OFDM systems, which in turn increases the efficiency
of the transmitter power amplifier. This algorithm does not
require side information to be sent to the receiver, and can be
easily added to an existing system without seriously disturbing
any coding already present. The phase synthesis algorithm
achieves reductions in PAPR of 3 dB or more with no
rate penalty at low SNR, making it a good choice for low
power OFDM systems. In this case, low SNR and low power
OFDM systems are characterized by each OFDM frequency
bin having a low SNR as seen by the receiver.

II. PAPR DISTRIBUTION AND CLIPPING PROBABILITY

FOR OFDM SYMBOLS

We first look at the PAPR distribution for OFDM symbols
to determine how often clipping occurs for a given PAPR
threshold and how much rate must be used to reduce the PAPR
below that threshold. To determine the distribution of PAPR
values for an OFDM symbol, we begin with the discrete-time
frequency samples which correspond to the values in each
frequency bin and model the time series of an OFDM symbol
as the bandlimited interpolation of samples of a circularly-
symmetric Gaussian random function. As [10] shows,

Pr(PAPR > PAPRo) = 1 − (
1 − e−PAPRo

)N
(1)

is the Complimentary Cumulative Distribution Function
(CCDF) of the PAPR of a discrete-time OFDM symbol of
length N , and the CCDF of the bandlimited interpolation of
these signals is closely modeled by the CCDF of a discrete-
time OFDM symbol of length 2N .

The left plot of Fig. 1 shows the CCDF for the PAPR
of an OFDM symbol with N = 128, corresponding to the
number of frequency bins for an MC-OFDM UWB (ultra-
wideband) system [11]. We see that the PAPR will be greater
than 6 dB with very high probability, but an OFDM symbol
with a PAPR greater than 10 dB will occur less than 1%
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Fig. 1. Left shows PAPR CCDF for an N=128 OFDM symbol (thin lines) and
its bandlimited interpolation (thick lines). Right plot has theoretical CCDFs
given by (1) for N = 32, 64, 128, 256, and 512 (left to right).

of the time. The type of modulation used does not affect
the peak distribution, as the plots for 4-QAM and 64-QAM
follow the expected CCDF given by (1) closely, except at
very low probabilities, which is an artifact of insufficient data
points. Note that the PAPR of the actual OFDM symbol is
limited to N , the number of frequency bins, but the Rayleigh
distribution model used in (1) has a nonzero probability for all
positive values. Also shown is the PAPR of the continuous-
time signals (approximated here by 10× oversampling of the
discrete-time signals, although in general 4× oversampling
should be sufficient [12]), which have a distribution within
about 0.5 dB of the expected CCDF from (1) for the PAPR
of an OFDM symbol with twice as many frequency bins.

The right plot of Fig. 1 shows how the average PAPR
increases as the length of the OFDM symbol increases, as well
as how the probability density of PAPR values becomes more
clustered around the mean value. As the number of frequency
bins increases, the PAPR of a randomly selected OFDM sym-
bol asymptotically approaches ln N with probability one [3].
One implication of this is that to reduce the PAPR to be
less than ln N as N → ∞ would require a significant drop
in the code rate, while allowing a maximum PAPR of ln N
requires a negligible loss in the code rate. Unfortunately, the
specific combinations of frequency bin values that will create
the OFDM symbols with high peaks are not easily avoided
or predicted due to the nonlinear relationship between the
frequency- and time-domain signals. Coding strategies do exist
which will keep the PAPR no larger than c ln N for a constant
c [13], but for small values such as N = 128 this corresponds
to a PAPR limit of almost 16 dB.

III. EFFECT OF PAPR ON AMPLIFIER EFFICIENCY

Because the amplitude and phase of each OFDM frequency
bin are independently chosen, the corresponding time wave-
form will in general be very peaky. As a worst case example,
the same constellation point is chosen in all the frequency bins.
The time waveform will have a single peak at the first sample,
and all others will be zero, resulting in a PAPR proportional
to N . For a typical number of subcarriers, such a large PAPR
can greatly reduce transmitter efficiency.
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Fig. 2. Comparison of the instantaneous efficiency of various amplifier
topologies as functions of the output power (left) and the average efficiency
for a Rayleigh input distribution vs. maximum PAPR (right).

A. Instantaneous Amplifier Efficiency Curves

The instantaneous efficiency, defined as the ratio of the
output power to the total power consumption, of a power
amplifier depends strongly on both the input level as well
as the type of amplifier used. Because of the high linearity
demands of OFDM symbols, we restrict the analysis to linear
amplifiers only. In addition to the common class A ampli-
fier, we also consider more efficient linear amplifiers which
adaptively bias the circuits [14] or combine the output of two
constant amplitude amplifiers through outphasing [15].

The left plot of Fig. 2 shows the efficiency curves of
these three types of amplifiers with respect to output power
assuming ideal components and hard clipping at a maximum
output of 20 dBm (100 mW). The class A amplifier has the
worst efficiency, as expected, with the adaptive class A am-
plifier improving the efficiency somewhat, and the outphasing
amplifier having the highest efficiency when within 5–6 dB
of its maximum output power. Although the ideal efficiencies
of these amplifiers can approach 100%, typical maximum
amplifier efficiencies are closer to 30% for both of the class
A amplifiers, and 47% for the outphasing amplifier [15].

B. Average Efficiency with Rayleigh Inputs

From the instantaneous efficiency curves, we can calculate
the expected efficiency for a given clipping threshold for each
amplifier [10]. The right plot of Fig. 2 plots the efficiency
curves for these amplifiers for a Rayleigh magnitude distribu-
tion, which approximates the distribution of an OFDM symbol.
Here, maximum PAPR denotes the largest PAPR that will not
be clipped by the amplifier. Thus a maximum PAPR of 10 dB
corresponds to an Input Back Off (IBO) of 10 dB for the
average transmit power.

Although the class A amplifier can have a theoretical
maximum efficiency of 50%, the actual efficiency is often less
than 10%, and with a maximum PAPR of 10 dB corresponding
to a 1% clipping level, the efficiency is only 5%. The adaptive
class A amplifier fares much better, but its efficiency is still
less than 15% for a maximum PAPR of 10 dB or greater.
If the PAPR could be limited to less than about 7 dB, then
the outphasing amplifier becomes the most efficient linear
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amplifier, approaching efficiency over 60%. Even though the
outphasing amplifier has the highest maximum efficiency, the
Rayleigh distribution emphasizes the low magnitudes, which
is where the amplifier efficiency is at its lowest. If nothing
is done to reduce the large amplitude “tail” of the magnitude
distribution, then the expected PAPR for a 64-QAM system
with 128 frequency/time samples is about 16 dB. None of the
linear amplifiers are able to achieve an efficiency above 10% at
this IBO, with the outphasing amplifier having an efficiency of
only a few percent. Reducing the PAPR of the OFDM signal
can greatly increase the efficiency of the amplifier by allowing
the average power of the input to the amplifier to be increased
without increasing the probability of clipping.

IV. AMPLITUDE SYNTHESIS FOR PAPR REDUCTION

The proposed method to reduce the PAPR is inspired by a
related problem in phased array design. A phased array alle-
viates the problems of having a high powered linear amplifier
by summing the outputs of many amplifiers in free space. If
the outputs of the small amplifiers are treated as samples of
a continuous-time signal, then the resulting antenna pattern is
given by the Fourier transform of the time samples [16]. The
problem of trying to specify the amplitude and phases for each
of the amplifiers to achieve a desired antenna pattern is very
similar to trying to specify the amplitude and phases of the
frequency bins to make the time signal a desired shape (in this
case, a constant amplitude signal).

For each frequency bin in the OFDM symbol, M -QAM
constellations are used, which encode the information in each
bin with a magnitude and phase representing the appropriate
constellation point. It is a known result that given only
the frequency-domain magnitude of an unknown time signal
which meets a mild set of conditions, it is possible to recover
the frequency-domain phase of the unknown signal [17].

The PAPR synthesis algorithm only transmits information
via the frequency magnitude of the OFDM symbol, and tries
to “recover” the phase information that comes from a low
PAPR time signal with the desired frequency magnitudes. At
the transmitter, this operation comes at the cost of some of
the data rate since information could have also been sent via
the phase channel, as well as some computation complexity to
synthesize the appropriate phases. At the receiver, the decoding
only uses the magnitudes of the frequency bins and ignores the
phases. The synthesis algorithm does not require information
to be shared between the transmitter and receiver, and has a
much higher complexity to encode rather than decode. This
rate loss is prohibitive at high SNR, but at low SNR the rate
loss vanishes because the phase channel has zero capacity,
making this algorithm viable for low power applications.

A. Capacity of Phase- and Magnitude-Only Channels

Starting with a complex additive Gaussian channel,

y = x + n, (2)

Fig. 3. A typical constellation for the complex (left), magnitude-only
(middle), and phase-only (right) channels.

where x is the input, y is the output, and n is additive white
zero-mean Gaussian noise, with complex variance 2σ2. The
noise is uncorrelated with the input x . The complex channel
can be viewed as two independent parallel real and imaginary
channels, each with one-dimensional Gaussian noise with
variance σ2. The capacity given average input power P is [18]

Creal = Cimag =
1
2

log2

(
1 +

P

σ2

)
(3)

in b/s/Hz where P/σ2 is the SNR. The capacity of the complex
channel Ccplx is then the sum of the capacities for the real and
imaginary channels.

Alternately, the complex channel can be decomposed into a
magnitude-only and a phase-only channel. Fig. 3 shows what
signal constellations might look like for these channels. The
left plot is a 16-QAM constellation, which can be split up
easily into two one-dimensional constellations, one each for
the real and imaginary channels. The middle plot is what a
constellation would look like for the magnitude-only channel,
in which the phase is arbitrary. The result is concentric rings,
with each ring representing a constellation “point.” The right
plot shows the constellation “points” for the phase-only chan-
nel. Because the magnitude is arbitrary, each ray represents
a single constellation point, although given an average power
constraint, the constellation points would be the intersection
of these rays with a circle of radius

√
P .

The magnitude-only channel looks like

y =
∣∣ |x |ejθ + n

∣∣ , (4)

where the magnitude |x | encodes the information to be sent,
and the angle θ is arbitrary. The noise n is complex Gaussian
as before, and the output y is the magnitude of the noisy input
signal. For this channel, the capacity in the high and low SNR
regime is [19]

Cmag ≈




1
2
Ccplx

P

σ2
� 1

Ccplx
P

σ2
� 1 .

(5)

At high SNR, the capacity of the magnitude-only channel is
half that of the complex channel, which is the same as if
information was only transmitted on the real channel. Thus
restricting the input to only transmit information via the
signal magnitude imposes a rate loss of one half. At very
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low SNR, however, the optimum distribution is Pulse-Position
Modulation (PPM) [20], and there is no loss in capacity by
using the magnitude-only channel. This is unlike the case of
the complex channel, for which the Gaussian distribution is
optimal for all SNR, and the real channel always has half the
capacity of the complex channel. Numerical calculations of
the capacity show that at SNR values near 0 dB, the rate loss
from ignoring phase is greater than one half, but not more
than 60% when compared to the complex channel [21].

For an OFDM symbol, PPM could correspond to only
transmitting energy on a single frequency bin, with the bin
number carrying the signal information. The resulting time
signal is then a complex sinusoid for the minimum possible
PAPR. This leads to a great loss in code rate, however, with
only seven bits transmitted per OFDM symbol with N = 128.

The phase-only channel looks like

y = �
(√

Pejθ + n
)

, (6)

where the input x is a constant magnitude signal with magni-
tude

√
P . The information is carried on the phase θ, and n is

again complex Gaussian noise. The output y is the phase of
the input signal with additive noise. At high SNR, the capacity
of the phase-only channel is [22]

Cphase ≈ log2

√
4π

e

P

σ2
≈ 1

2
log2

(
P

σ2

)
. (7)

At high SNR, the capacity of the complex channel is

Ccplx ≈ log2

(
P

σ2

)
, (8)

so the capacity of the phase-only channel is nearly half that
of the complex channel. At low SNR, because the capacity of
the magnitude-only channel is the same as that of the complex
channel, the phase channel must have zero capacity.

Thus using only the magnitude of the channel to send
information results in a rate loss of one half in the high SNR
regime, and no rate loss in the low SNR regime. Additionally,
since the frequency magnitude is usually scaled according to
the channel conditions, allowing the magnitudes to be altered
to reduce the PAPR would change the distribution of signal
power in the frequency bins to an undesirable configuration for
the wireless channel. On the other hand, allowing the phase to
be altered has no effect on the power distribution between the
frequency bins. The PAPR synthesis algorithm will therefore
use the phase of the frequency bins as adjustable parameters
to reduce the PAPR of the OFDM symbol.

B. The Phase Synthesis Algorithm

If the desired signal is a constant amplitude signal, with the
frequency magnitudes specified by the information to be en-
coded, then the unknown frequency phase can be “recovered”
to create the constant amplitude signal using the algorithm
specified in [23]. The desired constant amplitude signal is

X[f ] = M [f ]ejθ[f ], (9)

where M [f ] is the magnitude of the frequency bins and θ[f ]
is the corresponding phase to be synthesized by the phase
recovery algorithm.

The steps of the synthesis algorithm are then

1) Encode information bits in M [f ]
2) Choose random phases for θ[f ]
3) Project X[f ] into time domain to get x[t]

a) Use IFFT to generate time domain signal
b) Clip signal to average power level to get x′[t]

4) Project x′[t] into frequency domain and sample to get
X ′[f ] with M [f ] and θ′[f ]

a) use FFT to generate frequency domain signal
X ′[f ] = M ′[f ]ejθ′[f ]

b) Replace magnitude M ′[f ] with M [f ], keep phase
θ′[f ] as is

5) Go to Step 3 if maximum iterations not reached.

For each iteration, the frequency magnitude is forced to remain
at its original value, but the phases are allowed to change. If a
solution exists, the phase function should converge to whatever
is necessary for the resulting frequency signal X[f ] to have a
constant amplitude in the time domain.

The algorithm is similar to a POCS (projection onto convex
sets) algorithm, which is an iterative procedure that converges
to an element that is a member of two convex sets [24]. In
this case, the two sets are amplitude-limited time signals, and
frequency signals with a given frequency magnitude. Note that
both the time and frequency signals of these sets are discrete,
as the OFDM symbol only specifies the frequency magnitudes
for a finite number of frequency bins.

The phase synthesis is not a POCS algorithm because the
sets are not both convex. For a convex set, if A and B are
both elements of the set, then for any 0 ≤ α ≤ 1 the weighted
sum of the two elements αA + (1 − α)B is also in the set.
The set of amplitude-limited time signals is convex, but the
set of all signals with a specified frequency magnitude is not.
For example, the sum of two signals with the same frequency
magnitude but which are 180 degrees out of phase at every
frequency is zero. A POCS algorithm is guaranteed to find a
point in the intersection of the two sets, assuming it exists [24],
but this is not guaranteed if the sets are not convex. It can be
guaranteed, however, that the error signal never gets larger
with each iteration, although it may never converge to zero
even if a solution exists [25], [26].

In Step 3, the time signal is clipped to the average signal
power. Since adjusting the phase of the frequency bins will
not affect the total power of the signal, clipping to the average
power will ideally limit the time signal to a constant amplitude,
reducing the PAPR of the OFDM signal. To project into the
other set, the signal is converted to the frequency domain,
and then the magnitude is reset to the original specified
frequency magnitude. While the frequency magnitude is con-
stantly forced to the original values, the phases are allowed to
change to whatever values will lower the PAPR.
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In general, for N frequency samples, each time sample is
a linear combination of the N frequency magnitudes. The
coefficients are in turn functions of the frequency phases as
well as the sample number. Because N equations require N
parameters to solve, all the phases are expected to be needed
to make all the time sample magnitudes equal. Because the
phases are relative, in general N −1 of the N phases must be
used to make the time samples constant magnitude.

The actual signal that is amplified is the bandlimited in-
terpolation of these time samples, which is unlikely to be
constant amplitude even though the time samples are, however.
Additionally, although the error vector for the sampled signals
is guaranteed to be nonincreasing, the deviation of the asso-
ciated continuous-time signal has no such guarantee. Simula-
tions show that the although the time samples monotonically
converge to constant magnitude, the PAPR of the bandlimited
interpolation will sometimes decrease and then increase.

It is therefore necessary to check the continuous-time PAPR
after each iteration, keeping the current values only if they are
better than any previous ones. As a result, the algorithm always
runs for the maximum number of iterations and chooses the
iteration that resulted in the lowest PAPR. The algorithm is
not able to use the information about the continuous-time
PAPR during the projections unless the original signal is
oversampled, which is equivalent to expanding the bandwidth
of the signal and incurs an undesired loss in rate.

For OFDM symbols with a cyclic prefix, the extension is
straightforward. Since the cyclic prefix is a copy of part of the
OFDM symbol, it has no effect on the PAPR when added to the
OFDM symbol after the phase synthesis algorithm has been
run. Alternatively, the cyclic prefix could be added before the
phase synthesis algorithm, providing more degrees of freedom
for PAPR reduction, but at the cost of more computation.

V. SIMULATION RESULTS

In order to determine the performance of the synthesis algo-
rithm, simulations were run over 460,000 randomly-generated
128 bin OFDM samples using 64-QAM constellations. The
synthesis algorithms was able to reduce the PAPR by around
3 dB at a symbol error rate of 10−2, as shown in Fig. 4.
The resulting PAPR at a clipping probability of 10−2 after
100 iterations is near the 7 dB needed for the outphasing
amplifier to be most efficient of the linear amplifiers be-
ing considered. For M iterations, the synthesis algorithm
requires 2M FFT operations and M clipping operations, so
the computational complexity scales linearly with the number
of iterations. The difference between 100 and 200 iterations
is negligible, and only about 0.5 dB is lost by restricting the
iterations to ten. Simulations with 512 subcarriers show over
3.3 dB improvement at a clipping probability of 10−2 and
10 iterations. The larger number of subcarriers require more
iterations before there are no more gains, however, with a
0.3 dB improvement from 100 to 200 iterations.
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Fig. 4. CCDF of the PAPR for the phase synthesis algorithm for length
128 OFDM symbols using 64-QAM and 10× oversampling for bandlimited
interpolation. The difference between 10 (solid right) and 100 (solid left)
iterations is approximately 0.5 dB.

It should be noted again that these numbers are for the
continuous-time PAPR. If we only considered the discrete-time
PAPR, the synthesis algorithm reduces the PAPR to almost
0 dB even though the actual signal is not as constant magnitude
as the discrete-time PAPR would suggest. This is a pitfall that
is not always considered in other PAPR reduction schemes
that have been proposed.

A. Amplifier Efficiency Comparisons

The ultimate goal is not to reduce the PAPR, but to improve
the average efficiency of the amplifier. The average efficiencies
of the OFDM symbols resulting from the simulations in the
previous section were calculated, with each OFDM signal
scaled such that the peak power of the signal is exactly at
the saturation value of the amplifier to remove the effect
of clipping. Because the transmitter has already calculated
the peak of OFDM symbol for the synthesis algorithm, the
computational impact of this operation is negligible.

Fig. 5 summarizes the average efficiency of the synthesis
algorithm when combined with the three types of linear
amplifiers and normalized to include the rate losses incurred by
the magnitude-only output using the capacity curves from [21].
When the SNR is sufficiently low, the rate loss incurred by
the synthesis algorithm approaches zero. The largest efficiency
gain comes from using the synthesis algorithm with the
outphasing amplifier. If the outphasing amplifier is too large
for the target application, the adaptive class A amplifier is still
able to achieve significant gains in efficiency when coupled
with the phase synthesis algorithm. Even if it is not possible
to change the amplifier from a class A (e.g., preexisting system
design), using the phase synthesis algorithm can nearly double
the amplifier efficiency. At higher SNR values, however, some
of this efficiency gain is lost because many more symbols
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Fig. 5. Average energy per bit for three amplifier classes accounting for
rate losses. Thick lines represent result of synthesis algorithm, and thin lines
represent amplifier alone. Table shows average energy in the low SNR regime.

must be transmitted to achieve the same data rate as without
the algorithm. As Fig. 5 shows, when the SNR is higher than
-2.5 dB, the rate loss penalty makes the synthesis algorithm
output unfavorable compared to the original signal.

For the proposed MC-OFDM UWB system in [11], the
average transmitter output power is −10.3 dBm (93 µW),
with a target SNR of around 4 dB. Although this is above the
break-even point of the synthesis algorithm, the instantaneous
bandwidth of the OFDM symbols are only 7% of the total
allocated bandwidth. Using the entire bandwidth shifts the
overall SNR to -7.5 dB, where the rate loss from the synthesis
algorithm is much smaller. From Fig. 2, we see that for a class
A amplifier, the efficiency is about 1% for OFDM signals with
N = 128 frequency bins and no clipping or PAPR control.
Thus to transmit 93 µW requires almost 10 mW of power.
With the synthesis algorithm and an outphasing amplifier, only
about 2.5 mW of power is required. While this is less than 10%
of the total power budget for the transmitter in [11], a slightly
higher transmit power (e.g. 0 dBm, or 1 mW) would quickly
cause the amplifier to dominate the total power consumption.

VI. CONCLUSIONS

At low SNR, the synthesis algorithm is able to significantly
reduce the PAPR with little or no rate loss, making it suitable
for low power systems. Although the algorithm alone is able
to increase the overall efficiency regardless of the amplifier
used, the ability to optimize the type of amplifier to the PAPR
algorithm can lead to noticeably larger performance gains.
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