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ABSTRACT

A dense antenna array architecture is developed to ease the circuit
requirements of the radio frequency (RF) front-end in beamforming
applications. In the architecture, antennas are spaced more closely
than would otherwise be required to exploit the available degrees
of freedom. Such an array structure is analogous to temporally over-
sampled data conversion systems, which have reduced quantizer res-
olution requirements. For a linear, uniformly-spaced array, we de-
velop a spatial-domain version of ∆Σ quantization, and show that
with binary quantization for the in-phase and quadrature components
of antenna weights, even relatively modest amounts of oversampling
can reproduce beamforming patterns of interest to practically useful
levels of accuracy.

Index Terms�— Phased-arrays antennas, ∆Σ quantization, array
processing, RF circuits, millimeter-wave imaging, wireless commu-
nication

1. INTRODUCTION

Recent progress in millimeter-wave and microwave integrated circuit
(IC) manufacturing technology has created new opportunities for the
development of novel, low-cost antenna array architectures. Indeed,
the ability to integrate miniature microstrip antennas has expanded
the realm of applications for antenna arrays to a variety of embedded
communication and sensing systems. In such systems, the associated
specications on RF components such as phase-shifters, oscillators,
and ampliers, can be challenging to meet in a cost-effective manner.
In this paper, we develop a dense antenna array to ease such RF cir-
cuit requirements without sacricing performance, and demonstrate
its effectiveness for transmit and receive beamforming in phased-
array applications.

2. THE TRADITIONAL ARRAY ARCHITECTURE

In a traditional uniform linear array, an aperture of length L is
formed from a collection of antenna elements, adjacent pairs of
which are spaced d apart. The nominal spacing between elements
is d = λ/2. Provided that elements are at least as close as this
nominal spacing, the maximum number of available degrees of free-
dom offered by the aperture can be realized, and, in phased-array
applications in particular, grating lobes in beamforming patterns can
be avoided. Thus, since L = (N − 1)d, the minimum number of
antenna elements required is typically N◦ = 1 + 2L/λ.

With the associated antenna array architecture, depicted in
Fig. 1, a beam pattern can be formed by choosing antenna element
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weights wn = anejθn . This is implemented via N amplitude at-
tenuators and N phase shifters. At the transmitter, the RF signal
passes through such a beamformer, whose N outputs are directed
to N power ampliers and then N antennas. At the receiver, the
N antenna signals that result from the incoming wave pass through
N low-noise ampliers, are phase-shifted, amplitude-adjusted, and
superimposed via the beamformer to form the output signal. The
associated transmitter and receiver array radiation patterns are, re-
spectively,
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where k = 2π/λ is the wave number and ψ is the target angle of
radiation. Note that the narrowest beam that can be formed by such
processing has main lobe width proportional to λ/L when N > N◦,
where the constant of proportionality does not depend on N . Addi-
tional antenna elements do not further improve the array�’s resolution,
regardless of how the wn are chosen [1].

The classical array architecture poses challenges to circuit de-
sign and device technology. Accuracy of the array radiation patterns
in (1) depends on the accuracy with which {θn} and {an} are im-
plemented. This implies that the phase shifters in the beamformers
must be implemented with high resolution. Moreover, the power am-
pliers at the transmitter must have high linearity.(Linearity is less a
problem for low-noise ampliers at the receiver as they are less likely
to get saturated by the weak input.) Although a variety of approaches
have been proposed to improve the precision of these components,
most remain expensive and complicated; see, e.g., [2�–7]. For ex-
ample, phase shifting might be accurately performed at the base-
band with all-digital circuitry. But in such a scheme, all the array
signals have to be up-converted to RF band after phase-shifting (at
the transmitter) or undergo down-conversion from RF before phase
shifting (at the receiver). This means the phase relations between
the array signals must be preserved through up-conversion or down-
conversion, which imposes challenging phase noise requirements on
the associated mixers.

3. AN OVERSAMPLING ARRAY ARCHITECTURE

In contrast with the traditional architecture, we consider packing
more antennas N in the given aperture than would otherwise be re-
quired, i.e., N > N◦, for both transmit and receive array congu-
rations. This density is then exploited in a manner analogous to the
way temporal oversampling is exploited in data converter design.
In particular, just as sampling at a rate exceeding that dictated by
the Nyquist criterion reduces quantization resolution requirements,
the dense array uses N lower-quality RF components instead of N◦

higher quality ones.



y

s0

w2 wNw1

d = O(d )f

Beam Former

Power
Amplifiers

Antennas

Network
Matching
Impedance

1 2 Ny y

(a) Transmitter

ψ

d = O(d )f

w1 w2 wN

yRXBeam Former

Amplifiers

Antennas

Network
Matching
Impedance

Low Noise

(b) Receiver

Fig. 1. The classical antenna array architecture.

3.1. Spatial ∆Σ Quantization

To reduce our RF component specications, we constrain our sys-
tem to use coarsely quantized versions of the weights wn, and ex-
ploit the oversampling to minimize the effect of such quantization.
In particular, we exploit the principle of ∆Σ quantization [8] by di-
rectly translating it to the spatial domain. (For other rather different
multidimensional extensions of ∆Σ quantization motivated by im-
age processing and space-time coding, see, e.g., [9�–11].)

The spatial ∆Σ architecture is depicted in Fig. 2, and involves
creating a sequence of quantized weights vn that �“act�” in a manner
asympotically indistinguishable from the desired weights wn. The
associated processing proceeds as follows. At the nth antenna, we
obtain the difference between the desired weight wn and its counter-
part vn at the output of the corresponding quantizer, corresponding
to the ∆ part of the structure. We then add that difference to the in-
put of the nth quantizer, corresponding to the Σ part of the structure.
The result is then quantized using 4-PSQ (phase-shift quantization,
where the input is quantized to a constant amplitude and one of four
phases: 0◦, 90◦, 180◦, 270◦), which corresponds to quantizing each
of the in-phase and quadrature components to a single bit. As such
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Fig. 2. The spatial ∆Σ architecture at the transmitter. The corre-
sponding receiver architecture is obtained by reversing the beam-
former to have multiple inputs and a single output, i.e., the nth an-
tenna input from the low-noise amplier is mixed with vn, then all
such terms are summed.

only crude 4-angle phase shifters and (nonlinear) bilevel power am-
pliers are required in the RF front-end.

4. RESULTS

In this section, we sketch some of the associated analysis of the
dense-antenna architecture, present some simulation results, and dis-
cuss some implementation issues.

4.1. Analysis

Spatial ∆Σ oversampling can be understood in a manner analogous
to the way traditional temporal ∆Σ oversampling is understood. In
the latter, a time series {wn} is quantized into another time series
{vn}, from which one can recover {wn} by low-pass ltering. That
recovery is possible follows from the fact that the feedback struc-
ture of ∆Σ forces the average value of the quantized output to track
the average input, which has the advantage of suppressing the quan-
tization error spectrum at low frequencies. Similar behavior takes
place in the case of our spatial ∆Σ scheme. To see how the as-
sociated spatial low-pass ltering arises, note that the transmit and
receive array patterns BT(ψ) and BR(ψ) in (1) are effectively the
Fourier transforms of the weights {wn} or {vn} at the spatial fre-
quency ω = ±kd cos ψ = ±kL cos ψ/(N − 1). Hence, ω → 0
as N → ∞, i.e., the beamforming operation itself provides the re-
quired spatial low-pass ltering.

Ignoring mutual coupling between antennas for the moment, one
can show formally that (for transmit arrays)

B̂T(ψ) − BT(ψ) = O
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The corresponding receive array expressions B̂R(ψ) − BR(ψ) are
obtained by replacing j with −j.



A rough sketch of the derivation of (2) is as follows, and mirrors
the familiar ∆Σ analysis. The transmitter architecture illustrated in
Fig. 2 leads to

vn = wn + ẽn − ẽn−1,

where ẽn is the quantization error. Substituting the above vn into
(3), we obtain

B̂T(ψ) =
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The rst term in (4) has magnitude equal to BT(ψ). For large N , the
contribution from the third term in (4) is negligible, and thus to verify
that B̂T(ψ) approaches BT(ψ) in the limit of large N , it sufces to
argue that the second-term in (4) also vanishes asymptotically. To
this end, we have
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where we have used that the quantization errors are uncorrelated, i.e.,
〈ẽnẽ∗m〉 = σ2

eδn,m and d = L/(N − 1). A very similar argument
yields the associated receive array result.

The above analysis does not consider the effect of mutual cou-
pling between antennas in the array. In additional analysis, we in-
corporate mutual coupling effects on the array radiation patterns by
deriving from the S-parameter formulation modications of (1) in-
volving the array�’s impedance matrix. And we compute all entries
of the impedance matrix via the induced EMF method [12, 13].

4.2. Simulation

Figs. 3 and 4 show the simulated array pattern error ‖B̂ − B‖ as a
function of the oversampling ratio N/N◦ without and with mutual
coupling, respectively, in the case of a phased array. The (normal-
ized) array pattern errors are averaged over the radiation angle ψ and
array weights wn = ejnθ0 with various θ0. The wavelength is λ = 3
cm and the overall array aperture is L = 5λ = 15 cm. In the com-
putation of mutual coupling, the antennas are modeled as cylindrical
radiators with radius 1 mm and length 1 cm. As Fig. 3 reects, the
quantization error of array patterns generally decays with the num-
ber of antennas, ultimately approaching the 1/

√
N asymptote.

Note that the curve is not smooth. This is likely due to the fact
that we do not take samples of antenna weights {wn} over many
values. We only restrict the possibilities to the phased-array cases
wn = ejnθ0 , which are the most relevant to beamforming. More-
over, we only average over N◦ distinct values of θ0. Thus when
N is small, the total number of data points (over distinct n and θ0)
are really too few to warrant the law of large numbers and accord-
ingly to smooth the quantization errors. Increasing the number of
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Fig. 3. The average and worst quantization errors over various radi-
ation patterns (without mutual coupling); phased-array inputs, λ = 3
cm, L = 5λ.
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Fig. 4. The average and worst quantization errors over various ra-
diation patterns (with mutual coupling); phased-array inputs, λ = 3
cm, L = 5λ; cylinder antennas with length 1 cm and radius 1 mm.

θ0 within the range of [0, π] does not signicantly smooth the curve,
either, for the beam patterns become highly overlapped and hence
correlated with one another as the number of samples of θ0 exceeds
N◦.

Fig. 4 shows that antenna mutual coupling does incur some
penalty in convergence rate of the beam pattern quantization error.
While a detailed analysis is ongoing, we have found that the mutual
coupling effect on pattern errors can be reduced to a multiplicative
factor at large N , owing to the antenna impedance matrix�’s Toeplitz
structure, i.e., Bcoupled(ψ) ≈ C(ψ)Buncoupled(ψ). Our calcula-
tions indicate that C(ψ) slowly converges to a fairly at pattern as
N becomes large. In any case, the benets of oversampling are
apparent in this analysis as well.

Fig. 5 compares the actual radiation patterns of ideal phased ar-
rays and ∆Σ quantized phased arrays with mutual coupling. Two
particular values of oversampling ratio are chosen: (a) N/N◦ = 1.5,
and (b) N/N◦ = 11.6. Each plot shows seven distinct ideal phased-
array patterns with roughly non-overlapping mainlobes and the cor-
responding quantized, mutually coupled patterns. As is apparent,
the quantized patterns closely approximate the target patterns even
for modest amounts of spatial oversampling.
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Fig. 5. Radiation beam patterns of ideal phased arrays (dashed
curves) and ∆Σ quantized arrays (solid curves), with mutual cou-
pling taken into account.

4.3. Implementation Issues

Recent progress in the millimeter-wave integrated circuit (MMIC)
technology makes it increasingly practical to implement the dense
array system. The most serious manufacturing challenge of the sys-
tem is to make a closely separated antenna array within a limited
aperture. Fortunately, the availability of various mini-scaled, em-
bedded radiation elements, such as microstrip antennas and on-chip
dipole antennas, has resolved much of the difculty associated with
implementing the dense antenna array. In the 77 GHz phased-array
transceiver with on-chip dipole antennas on silicon substrate in [14,
15], for instance, the separation between two antennas is less than
1.7 mm. By contrast, in our numerical cases for the 10 GHz dense
array in which the aperture size is 15 cm and the number of elements
is less than 150, the minimum inter-antenna distance is 1 mm�—a
value with the same order of magnitude as that of the actually imple-
mented 77 GHz transceiver. The dozens of radiation elements in an
electronically tunable reectarray in [16] also indicates the possibil-
ity of implanting and controlling a large number of patched antennas
on a conned surface.

The other parts of the system (not discussed in this paper) are
also practically implementable. The impedance matching network
can be made with simple components such as reactors and quarter-
wave transmission lines that do not require tuning and do not couple
energy between distinct signal paths. The RF devices, mixers, and
∆Σ quantizers can be embedded in existing integrated circuitry.
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