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Abstract

This thesis is devoted to the study of computing with unreliable resources, a paradigm
emerging in a variety of technologies, such as circuit design, cloud computing, and crowd-
sourcing. In circuit design, as we approach the physical limits, semiconductor fabrication
has been increasingly susceptible to fabrication flaws, resulting unreliable circuit com-
ponents. In cloud computing, due to co-hosting, virtualization and other factors, the
response time of computing nodes are variable. This calls for computation frameworks
that take this unreliable quality-of-service into account. In crowdsourcing, we humans are
the unreliable computing processors due to our inherent cognitive limitations.

We investigate these three topics in the three parts of this thesis. We demonstrate
that it is often necessary to introduce redundancy to achieve reliable computing, and this
needs to be carried out judiciously to attain an appealing balance between reliability and
resource usage. In particular, it is crucial to take the statistical properties of unreliability
into account during system design, rather than to handle it as an afterthought.

In the first part, we investigate the topic of circuit design with unreliable circuit com-
ponents. We first analyze the design of Flash Analog-to-Digital Converter (ADC) with
imprecise comparators. Formulating this as a problem of scalar quantization with noisy
partition points, we analyze fundamental limits on ADC accuracy and obtain designs that
increase the yield of ADC (e.g., 5% to 10% for 6-bit Flash ADCs). Our results show that,
given a fixed amount of silicon area, building more smaller and less precise comparators
leads to better ADC accuracy. We then address the problem of digital circuit design with
faulty components. To achieve reliability, we introduce redundant elements that can re-
place faulty elements via a configurable interconnect. We show that the required number
of redundant elements depends on the amount of interconnect available, and propose de-
signs that achieve near-optimal trade-off between redundancy and interconnect overhead
in several design settings.

The second part of this thesis explores the problem of executing a collection of tasks
in parallel on a group of computing nodes. This setting is often seen in cloud computing
and crowdsourcing, where the response times of computing nodes are random due to
their variability. In this case, the overall latency is determined by the response time of
the slowest computing node, which is often much larger than the average response time.
Task replication, which sends the same task to multiple computing nodes and obtains the
earliest result, reduces latency, but in general incurs additional resource usage. We propose
a theoretical framework to analyze the trade-off between latency and resource usage. We



show that, while in general there is a tension between latency and resource usage, there
exist scenarios where replicating tasks judiciously reduce both latency and resource usage
simultaneously. Our investigation gives insights on when and how replication helps, and
provides efficient scheduling policies for a variety of computing scenarios.

Lastly, we research the problem of crowd-based ranking via pairwise comparisons,
with humans as unreliable comparators. We formulate this as the problem of approximate
sorting with noisy comparisons. By developing a rate-distortion theory on permutation
spaces, we obtain information-theoretic lower bounds for the query complexity of ap-
proximate sorting with both noiseless and noisy comparisons. Our lower bound shows
the optimality of certain existing algorithms with respect to noiseless comparisons and
provides a benchmark for approximate sorting with noisy comparisons.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science



Acknowledgments

If you are lucky enough to have studied at MIT as a young man, then
wherever you go for the rest of your life, it stays with you, for MIT is
a moveable feast.

Adapted from Ernest Hemingway, A MOVEABLE FEAST

It has been an unforgettable experience to pursue my Ph.D at MIT, and there are
many people I am truly thankful for during this journey.

First and foremost, I want to thank my advisor Greg Wornell for his support, encour-
agement and guidance. The past six years have been a particularly exciting phase of my
professional development, during which I develop my taste of problems, learn how to ask
the right questions, and become a better researcher. None of these would be possible
without his mentorship. Besides Greg, I am also privileged to have Yury Polyanskiy and
Devavrat Shah as my thesis committee members. Starting from a paper reading seminar,
I collaborate with Yury on the reliable circuit design problem. This fun collaboration
has been a great learning experience, and eventually leads to a part of my thesis. From
Devavrat, I receive many insightful comments regarding both technical results and pre-
sentation, and I just wish I have more time to learn from him!

In addition to my thesis committee, I would like to thank my collaborators during vari-
ous stages of my grad school career. All these collaborations are productive and enjoyable,
and I can only attribute that to my good luck and the great intellectual and emotional
capacities of my collaborators: Venkat Chandar, Sae-Young Chung, Amir Ingber, Gauri
Joshi, Yuval Kochman, Arya Mazumdar and Hongchao Zhou. I also want to acknowledge
Ligong Wang, Frank Yaul and Anantha Chandrakasan for helpful discussions.

Being a member of the Signals, Information and Algorithms Laboratory, I am sur-
rounded by a group of intelligent and supportive people, and it is everyone of them that
makes this group awesome: Anthony Accardi, Mo Deng, Vijay Divi, Qing He, Ying-zong
Huang, Gauri Joshi, Ashish Khisti, James Krieger, Emin Martinian, Urs Niesen, David
Romero, Gal Shulkind, Maryam Shanechi, Ligong Wang, Atulya Yellepeddi, Xuhong
Zhang, Hongchao Zhou, and of course our great administrative assistant Tricia O’Donnell.
In particular, I thank Emin for the internship with him at Bain Capital as well as many
helpful career advices, Anthony for the internship with him at Swipely, Maryam for shar-
ing her perspectives, Gauri for being a great listener to my complaints, Hongchao for often
being the other guy working in the office suite, and Ligong for always being available for
technical and non-technical discussions.

I also benefit greatly from my interaction with the larger Research Laboratory of
Electronics community, especially the RLEg. Among all the wonderful members, I want
to especially thank Vivek Goyal for his semi-annual and superbowl parties, Lizhong Zheng
for inspiring me to run the first marathon in my life, Al Oppenheim for sharing his wisdom,
and John Sun for valuable advices and helpful discussions. Beyond RLE, I have the great
fortune to interact with countless bright young men and women in the MIT community.
Among them, I want to especially thank Vincent Tan for his belief in me as an information
theorist, and Mario Lok and Weifei Zeng for being delightful roommates.



All these MIT experiences are fascinating, but they would not be possible without
those who introduced me to the world of intellectual discovery at the University of Toronto:
Frank Kschischang, Ben Liang, Danilo Silva and Wei Yu. It was my great fortunate to
meet them, and I am always grateful for their encouragement and guidance.

Finally, I want to thank my parents for their unconditional love and support, and
Hengni for her patience and the energy she brings to my life. This journey is at its end,
and I look forward to the next one with all of you!



Contents

. Introduction 17
1.1. Common notation . . . . . .. .. .. L L 18
Reliable circuit design with fabrication flaws 21

. On the challenge of yield in semiconductor fabrication 23

. Designing Flash ADC with imprecise comparators 25
3.1. Introduction . . . . . . .. L L 25
3.2, Background . . . . ... L Lo 26

3.2.1. ADC and performance metrics . . . . . .. .. ... ... ... .. 26
3.2.2. The Flash ADC architecture . . . . .. ... ... ... .. ..... 29
3.3. Problem formulation . . . .. .. ... oo o L 31
3.3.1. Classical scalar quantization problem . . . . . . . .. ... ... ... 31
3.3.2. Scalar quantization with noisy partition points . . . . . .. ... .. 32
3.4. High resolution analysis for noisy partition points . . . . . . ... ... ... 33
3.4.1. High resolution analysis of MSE . . . . .. ... ... ... ..... 35
3.4.2. High resolution analysis of maximum quantization cell size . . . . . 35
3.4.3. High resolution analysis of maximum quantization error . . . . . . . 37
3.5. Applications to Flash ADC design . . . . . . ... ... ... ........ 38
3.5.1. MSE-optimal partition point density analysis . . . . ... ... ... 40
3.5.2. Flash ADC design with imprecise comparators . . . . .. ... ... 42
3.5.3. Technology scaling . . . . .. ... ... ... ... ... ... 47
3.6. Concluding remarks . . . . . .. .. L L 51

. Designing digital circuit with faulty components 53
4.1. Introduction . . . . . . . . . L 53
4.2. Problem formulation . . . . . .. ... ... 54

4.2.1. The redundant circuit model . . . . . . .. ... ... 54
4.2.2. Resource usage in the redundant circuit . . . . . . .. ... ... .. 95
4.2.3. The redundant circuit design settings . . . .. .. .. .. ... ... 56
4.3. Deterministic error correction setting . . . . . . . ... oL oL o7
4.3.1. Analysis for the general-purpose setting . . . . ... ... ... ... 59
4.3.2. Analysis for the application-specific setting . . . . .. ... ... .. 60
4.4. Probabilistic error correction setting . . . . . .. ... L oL 63



11

4.5.

4.4.1. Analysis of redundant circuit with a single element type

4.4.2. Analysis of redundant circuit with multiple element types . . . . . .

Concluding remarks . . . . . . .. ..o

Scheduling parallel tasks with variable response time

On scheduling parallel tasks

5.1.
5.2.
5.3.

5.4.
5.9.

Motivating applications . . . . . . ... . ... ... ... ...
Related prior work . . . . .. . ... oo oo
Problem formulation . . . .. ... ... 0000000
5.3.1. Notation. . . . ... ... ... ... ... .. ...
5.3.2. Systemmodel . . . .. ... ...
5.3.3. Performance metrics . . . . ... ... ... ... ....
Motivating example . . . . . ..o oo
Two approaches for analyzing scheduling policies . . . . . . ..

Design and analysis of forking policies

6.1.
6.2.

6.3.

6.4.
6.5.

Single-fork policy and its performance measures . . . . . . . . .
Order statistics: definitions and results . . . . . . ... ... ..
6.2.1. Central order statistics . . . . . . . . .. ... .. ....
6.2.2. Extreme order statistics . . . . . .. ... ... ... ..
6.2.3. Intermediate order statistics . . . . . ... ... ... ..
Single-fork policy analysis . . . . . . ... ... ... ......
6.3.1. Performance characterization . . . . ... ... ... ..
6.3.2. Scheduling examples . . . . . ... ... ...
Multi-fork policy analysis . . . .. ... ... ... .......
Concluding remarks . . . . . . ... .. L Lo

Design and analysis of general scheduling policies

7.1.
7.2.
7.3.

7.4.
7.5.

Discrete execution time distribution . . . . . ... ... .. ..

Scheduling objective function . . . . . . .. .. ... ...
Scheduling a single task . . . . . . .. ... oo
7.3.1. Computing the trade-off between latency and cost . . .
7.3.2. Heuristic policy search algorithm . . . .. ... ... ..
7.3.3. Bimodal execution time distribution . . . . .. ... ..
Scheduling multiple tasks . . . . . . ... ... ... ... ..
Concluding Remarks . . . . . . .. .. ... L.

III Approximate sorting with noisy comparisons

8. The approximate sorting problem with noisy comparisons
8.1. Motivating application: crowd-based ranking . . . .. .. ...
8.2. Minimum-comparison approximate sorting . . . . . . . .. . ..

67

69
69
70
71
71
71
73
74
75

7
77
80
80
80
83
83
83
84
90
91

93
93
94
95
95
96
98
102
102

105



8.3. Related works and problems

8.2.1. Notation and facts .
8.2.2. Problem definition .

9. A rate-distortion theory for permutation spaces

9.1.
9.2.

9.3.
9.4.

9.5.

9.6.

9.7.

9.8.

Introduction . . . . . . . ..
Problem formulation . . . .
9.2.1. Distortion measures

9.2.2. Rate-distortion problems . . . . . . . .. ... . Lo L.
Relationships between distortion measures . . . . . .. .. .. ... ... ..
Trade-offs between rate and distortion . . . . . . .. ... ... ... ....
9.4.1. Rate distortion functions . . . . . .. .. ... Lo
9.4.2. Higher order term analysis . . . .. . .. ... ... .. ... ...

Compression schemes . . . .

9.5.1. Quantization by sorting subsequences . . . .. ... ... ... ...
9.5.2. Component-wise scalar quantization . . . . .. ... ... .. ....
9.5.3. Compression in the moderate distortion regime . . . . . . . .. ...
9.5.4. Compression in the small distortion regime . . . .. ... ... ...
9.5.5. Compression in the large distortion regime . . . . ... .. .. ...
Compression of permutation space with Mallows model . . . . .. ... ..
9.6.1. Repeated insertion model . . . . . . . .. ...

9.6.2. Lossless compression
9.6.3. Lossy compression .

On the lower bound of query complexity in approximate sorting . . . . . . .
9.7.1. Uniform distributional model . . . . . . . . ... ... ... .....
9.7.2. Mallows distributional model . . . . . . . . . .. ... .. ... ...

Concluding remarks . . . .

10.Concluding remarks

A. Derivations and proofs for Part I
A.1. Results regarding the performance metrics of ADC . . . . . ... ... ...
A.2. Derivations for high resolution analysis . . . . . . ... ... ... ... ...
A.2.1. High resolution analysis of MSE . . . . . ... ... ... ......
A.2.2. High resolution analysis of maximum quantization cell size . . . . .
A.2.3. High resolution analysis of maximum quantization error . . . . . . .
Proofs regarding Flash ADC design . . . . . . . ... ... ... .. .....

A3.

A4

A5,

A.3.1. Proof of Lemma 3.1

A.3.2. Optimal partition point density analysis . . . . . . . ... ... ...
Proofs for the deterministic error correction setting . . . . . . . .. ... ..
A.4.1. Proofs for the general purpose setting . . . . ... ... .......
A.4.2. Proofs for the application-specific setting . . . . ... .. ... ...
Proofs for the probabilistic error correction setting . . . . ... ... .. ..
A.5.1. Proofs for Lemma 4.11 . . . . . . . .. ...

A.5.2. Proof of Lemma 4.12

113
113
114
114
117
118
120
120
122
123
124
126
127
128
130
130
131
132
133
134
134
134
135

137

141
141
142
142
145
147
148
148
149
150
150
151
151
151
154



A.5.3. Proof of Lemma 4.13
A.5.4. Proof of Lemma 4.14

B. Results and proofs for Part 11

B.1. Some results in order statistics . . . . . ... ... oL
B.2. Proofs regarding the single-fork policy . . . ... ... ... ... ......

B.2.1. Proof for latency and
B.2.2. Proofs for Theorem 6.

costs . ..
10 . . .

B.3. Calculations regarding the single-fork policy . . . . . . . ... .. ... ...

B.3.1. Calculations for Paret

B.3.2. Calculations for Shifted Exponential execution time distribution

o execution time distribution . . . . . . . . ..

B.4. Proofs for single task scheduling . .. ... ... ... ... .........

B.4.1. Proofs for Theorem 7.

1 and Theorem 7.2 . . . . . .. .. ... ...

B.4.2. Proofs related to corner points . . . . . ... ... ... ... ...

B.4.3. Proof of Lemma 7.5

B.4.4. Proof of Theorem 7.6
B.4.5. Proof of Theorem 7.7
B.4.6. Proof of Theorem 7.8

B.5. Proofs for multi-task scheduling . . . . . .. ... ... ... ..

B.5.1. Proof of Theorem 7.9

C. Results and proofs for Part II

1

C.1. Geometry of permutation spaces . . . . . . . . . .. ... ...
C.2. Proofs on the relationships among distortion measures . . . . . . ... ...

C.2.1. Proof of Theorem 9.1
C.2.2. Proof of Theorem 9.3
C.2.3. Proof of Theorem 9.4
C.3. Proofs on the rate distortion
C.3.1. Proof of Theorem 9.5
C.3.2. Proof of Theorem 9.6
C.4. Proofs on Mallows Model .
C.4.1. Proof of Lemma 9.13
C.4.2. Proof of Lemma 9.14

List of Notations
Index

Bibliography

10

functions . . . . . . . . ..o

157
157
158
158
159
160
160

. 162

163
164
166
166
167
167
168
169
169

171
171
173
173
174
175
177
177
178
179
179
180

183

185

187



List of Figures

3-1.

3-2.

3-4.
3-5.

3-6.

3-7.

3-8.

3-9.

3-10.

3-11.

The relationship between input v;, and output ADC code of an ideal 3-bit
uniform ADC. The black dots indicate reproduction point of each output

code. ..o,

DNL and INL of a non-ideal 3-bit uniform ADC. The solid curve represents
the actual 10 relationship of the ADC, and the dashed curve represents the

ideal 10 relationship of the ADC. . . .. ... ... ... .. .. ......
. Flash ADC with ideal comparators. . . . . . . . . .. ... ... ... ....
Flash ADC with imprecise comparators and calibration. . . . . ... .. ..

The ratio of Ex y» [d (X, W")] obtained from Monte-Carlo simulations and
numerical calculations of the integral in (3.15) for a variety of fx(:) and

P () o

Block diagram of a Flash ADC with imprecise comparators. X is the input
signal, v™ are the designed reference voltages and the V"™ are the fabricated
reference voltages, which is a noisy version of v”. A comparison of X and
V" leads to the comparator outputs Y". The reconstructor g(-,-) takes

both Y and V" to produce X € C. . . . . . ... .

Relationship between the design and fabricated reference voltages and their

point density functions. . . . . . . . ...

7*(x) and 7*x¢(x) obtained from Algorithm 1 for uniform input distribution
over [—1,1], with k = 7 for all o values. The stems indicate 7(z) and the

solid curves indicate (7 @)(z). . . . . . .

Comparisons of c.d.f.s correspond to MSE-optimal and St-optimal designs
for b = 6,7 = 6 and ¢ = 0.2,0.5,0.8. The solid lines are computed based
on (3.22) and the dashed lines are obtained from Monte-Carlo simulations.
The solid lines are only plotted between asymptotic lower and upper bounds

obtained from (3.23) with ¢ =4. . . ... .. ... ... L L.

Comparisons of c.d.f.s correspond to MSE-optimal and uniform designs for
6-bit Flash ADCs. The “analytical” lines are computed based on (3.22)
and the “simulated” lines are obtained from Monte-Carlo simulation.

The probability of maximum quantization error less than 1LSB (yield) for
a 6-bit ADC with different designs and o values. The MSE-optimal designs
are the ones shown in Fig. 3-8, and the “uniform” designs are specified in

(3.30). .

46

11



12

3-12. The quantization regions and reconstruction points of two 2-bit ADCs with
different reproduction values. Both ADCs have exactly the same set of
reference voltages, which are indicated by the solid vertical lines, and the
reproduction values are indicated by the solid dots. The dashed vertical
lines indicate an evenly spaced grid of [-1, 1], and the small circles indicate
the midpoint of each quantization cell formed by the reference voltages.

3-13. c.d.f.s of MSE-optimal designs for 6-bit Flash ADC with (approximately)
the same number of comparators but different number of output codes at
different values of . The dashed lines are c.d.f. computed based on (3.22)
and the solid lines are the cumulative histograms of the St obtained from
Monte-Carlo simulation. . . . . . .. .. ... L L

3-14. Comparison of the optimal \* with the stochastic ADC density Astochastic-
The two dotted lines show the noisy partition point densities correspond-
ing to ¢ (z — 1.078) /2 and 0 (x + 1.078) /2, which are {¢(x £+ 1.078)/2} and

sum to Astochastic- ................................

4-1. Example of an redundant circuit model and its reconfiguration process.

4-2. Characterization of the capacity region for the application-specific setting:
the shaded area is the achievable region, and the dashed line is one (not-
necessarily tight) outer bound of the capacity region. . . . . . .. ... ...

4-3. Two circuit design techniques. . . . . . . . . . ... . oo L.

4-4. Redundant circuit Cq,: each functional element has ¢ dedicated redundant
elements. . . ... Lo

4-5. The redundancy-wiring complexity trade-off for redundant circuit with one
type of element in the probabilistic error correction setting. . . . . ... ..

5-1. Example illustrating a scheduling policy and its performance measures. For
the two given tasks, task 1 has latency 8 and task 2 has latency 10, leading
to an overall latency of 10. The cloud user cost is 29, while the crowd
sourcing cost is simply 4. . . . . . ... Lo

5-2. Latency distribution under two different scheduling policies. . . . . . . . ..

6-1. Ilustration of single-fork policies with and without relaunching. . . . . . . .
6-2. Comparison of the expected latency E [T] obtained from simulation (points)
and analytical calculations (lines) for the Pareto distribution Pareto (2,2). .
6-3. Expected latency and cloud user cost for a Pareto execution time distribu-
tion Pareto (2,2), given n=400. . . . . . ... ...
6-4. The expected latency for relaunching and no relaunching (n = 1000) for
the Pareto distribution Pareto(2,2). . . . . . ... ... .. ... .. .. ..
6-5. The trade-off between expected latency E[T] and normalized expected
cloud user cost E [Cioua] /n for Pareto(2,2) and n = 400, by varying p
in the range of [0,1]. . . . . . ...
6-6. Comparison of the expected latency E [T] obtained from simulation (points)
and analytical calculations (lines) for the Shifted Exponential distribution
SExp (1,1). . o o o

48



6-7.

7-6.

7-7.

9-2.

9-3.

9-4.

9-5.
9-6.

The trade-off between expected latency E|[T] and normalized expected
cloud user cost E [Ciona] /n for SExp (1,1) and n = 400, by varying p in the
range of [0.05,0.95]. . . . ...

. Examples for discrete execution time distribution. . . . . .. ... ... ..
. Examples of the E [T]-E [C] trade-off region with m = 3. The label of each

point indicates the starting time vector, and the region is defined by two
piecewise linear segments marked by squares and dots respectively.

. Cost comparisons between the heuristic scheduling policies obtained via

Algorithm 3 and optimal scheduling policy obtained via Theorem 7.2, given
the starting time vector has length m = 4, for different execution time
distributions. . . . . ... oL

. The E [T]-E [C] trade-off for bimodal execution with two computing nodes,

which corresponds to starting time vector t = [t; = 0,t2]. . . . . . ... ..

. Bimodal two computing node. R is the range of parameters that t = [0, o]

is strictly suboptimal, R3 is the range t = [0, ag| is strictly suboptimal,
which means no task replication is strictly suboptimal. . . . . . .. ... ..
The performance of one-time replication polices for the execution time X’
in (7.10) with m = 2,3,4. The optimal policy with m = 4 is obtained from
Theorem 7.2. . . . . . . . e
Cost of the heuristic scheduling policy in Algorithm 3 for execution time
X in (7.9) with £ = 2. The starting time vectors for A = 0.2,0.4,0.6 and
0.8 are labeled in the plots. The optimal disjoint policy is search from all
possible starting time vectors that satisfy (7.8). . .. ... ... ... ...

. Relationship between source codes. An arrow indicates a source code in

one space implies a source in another space, where the solid arrow indicates
for both average-case and worst-case distortions, and the dashed arrow
indicates for average-case only. . . . . . . ... ...
Rate-distortion function for permutation spaces X (Sy,dxy,), X (Sn,dr),
X (Sn,dey),and X (Spode ) o o o v oo
Higher-order trade-off between rate and distortion in the small distortion
regime with D = an. The zig-zag of the d, upper bound in the range of
a > 1is due to the flooring in (9.17). . . . . ... ...
Higher-order trade-off between rate and distortion in the large distortion
regime with D = bn?. The lower bounds for d, and dx ¢, are identical.
Quantization by sorting subsequences. . . . . . .. ...
Entropy of the Mallows model for ¢ = 0.7 and ¢ = 0.9, where the dashed
lines are the coefficients of the linear terms, Hy (¢) /(1 —¢q). . . . . . . . ..

97

13



14



List of Tables

3.1.

4.1.

4.2.

5.1.

9.1.

The scaling of quantization accuracy for ADC in classical and process vari-
ation settings. . . . . . . . .. L L 50

The design settings correspond to factory designs for different parts of the

redundancy circuit. . . . . . ... oL oL oL oL 56
System parameters for reliable circuit design in the deterministic error cor-

rection setting. . . . . . . ... Lo Lo 57
Execution times for a job consists many tasks in the Google data center. . . 70
The values of « for different compression scenarios. . . . . . . . ... .. .. 128

15



16



Chapter 1

Introduction

If the world were perfect, it wouldn’t be.

Yogi Berra

In modern computing, we increasingly face the challenge of processing enormous
amount of data. Handling a large amount of data often requires a large amount of comput-
ing resources, and at a large scale, it is often economically inviable or even technologically
infeasible to maintain the reliability of each individual computing unit. These constraints
pose the challenge of computing with unreliable resources, where computing units could
be unreliable in a variety of ways.

The paradigm of computing with unreliable resources can be observed in many tech-
nologies or applications, such as VLSI circuit fabrication, cloud computing, and crowd-
sourcing. In VLSI circuit fabrication, as the sizes of transistors shrink, the issue of fab-
rication flaws become more severe. As a result, fabrication yield, the percentage of chips
that meet the fabrication specifications, decreases. In cloud computing, due to co-hosting,
virtualization and other factors, the response times of computing nodes are variable, even
when they all have the same configuration. Furthermore, computer failures are frequent
due to the scales of data centers. This calls for computation frameworks that take this
varying quality-of-service into account to achieve robust and efficient computation. Fi-
nally, in crowdsourcing, we are essentially using humans as unreliable processors to solve a
relatively complex problem by asking questions with answers in simple forms. This poses
challenges to both question design and answer aggregation.

All these scenarios involve building a reliable and efficient system with unreliable com-
ponents, a characteristic shared by the problem of communication in noisy environments.
For communication, information theory provides the key insight that by taking the sta-
tistical property of the noisy channel into account, we can introduce redundancy (coding)
efficiently and achieve reliable communication, as pointed out by Shannon in his seminal
paper [1]. In this thesis, we investigate how to introduce redundancy for a few computing
systems, and seek to answer the following two questions:

1. What is the fundamental trade-off between redundancy and performance (accuracy,
reliability, etc.)?

2. What is the proper way to introduce redundancy so that we can handle the unreliable
components in the system efficiently?

In particular, we analyze three applications in the three parts of this thesis. The first one
is reliable circuit design with fabricators flaws. We investigate the problem of designing
a Flash ADC with imprecise comparators, which provides an example of handling the

17



CHAPTER 1. INTRODUCTION

issue of process variation in VLSI circuit fabrication. In addition, we analyze the problem
of designing a reliable digital circuit with faulty components, where faulty components
come from fabrication defects. The second application is scheduling parallel tasks with
variable response times. This type of scheduling problem occurs when we distribute a
collection of computation tasks among a group of computing nodes, a phenomena that
happens in both data centers and crowd sourcing. For this problem, we aim to reduce
the latency of the computation without too much additional resource usage. The third
one is approximate sorting with noisy comparisons, where we aim to sort a list of items by
comparing them in a pairwise fashion so that the end result is close to their ordering. This
problem is motivated by crowd-based ranking, a canonical example of crowdsourcing. Our
investigations of these three applications show that, by taking the statistical property of
unreliability into account, we can introduce redundancy efficiently to increase fabrication
yield, reduce computation latency and improve sorting accuracy.

A few common tools emerge in our analysis for these three different applications. First,
rate-distortion theory provides the framework for evaluating both the ADC design problem
in Chapter 3 and the approximate sorting algorithm in Part III. Second, order statistics
analysis plays a pivotal role in the ADC performance characterization in Chapter 3, and
also the scheduling problem in Part II. Finally, combinatorics and probabilistic methods
provide many useful techniques for the analysis in Chapter 4, Chapter 7, and Chapter 9.

The three parts of the thesis are largely independent and can be read separately. Fur-
thermore, within Part I, Chapter 3 and Chapter 4 are largely independent, and Chapter 9
in Part III is mostly self-contained.

B 1.1 Common notation

In this section we introduce the notation that is used throughout the thesis. Additional
problem-specific notation is introduced separately in each part of this thesis.

We use R to denote all real numbers, R, all the non-negative real numbers, Z all
integers, and Z* all positive integers.

For any number x, we denote

lz| " = max {0, z} .

We use [n ] to denote all positive integers no larger than n, i.e., the set {1,2,...,n}.
We use x],j > i to denote a sequence of values z;, xz+1, ...,xj, and 2" as a shorthand
for #7. We use the bold font to represent a vector, e.g., X = [z1, T2, ..., Tp)].

We denote the indicator function by 1 {A}, where

114} = 1 clause A is true,
0 otherwise.
We use the notation O (-), () and O (-), where f(n) = O (g(n)) if and only if

limsup,,_,. [f(n)/g(n)] < oo, f(n) = Q(g(n)) if and only if hmlnfn_mo\f( )/g(n)| > 1,
and f(n) = © (g(n)) if and only if f(n) = O (g(n)) and f(n) = 2 (g(n)).
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Probability: we use lower-case letters (e.g., x) to denote a particular value of the cor-
responding random variable denoted in upper-case letters (e.g., X). We denote the sup-
port of a probability density function (p.d.f.) fx by Supp(fyx), namely, Supp(fx) =
{reR: fx(z)>0}.

We use “w.p.” as a shorthand for “with probability”, i.i.d. for “independent and iden-
tically distributed”, p.m.f. for “probability mass function”, p.d.f. for “probability density
function”, and c.d.f. for “cumulative density function”.

We use N (,u,ag) to denote a Gaussian distribution with mean g and variance o2,
Unif ([a, b]) a uniform distribution over an interval [a, b], Bern (p) a Bernoulli distribution
with parameter p, and Exp (A\) an Exponential distribution with parameter A.

[43

Order statistics: for random variables X1, Xo,--- , X,;, we define X.,, be the j-th order
statistics of X;,1 <i <mn, i.e., the j-th smallest sample in {X;,1 <14 < n}. For simplicity,
we also use X () to denote Xj., when the number of random variables n is clear from the
context.
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Part 1

Reliable circuit design with
fabrication flaws
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Chapter 2

On the challenge of yield in semiconductor
fabrication

Any physical quantity that is growing exponentially predicts a
disaster. You simply can’t go beyond certain major limits.

Gordon Moore, at the 2007 INTEL DEVELOPER FORUM

The semiconductor industry has enjoyed tremendous success in the past fifty years.
One highlight of this success is the continued realization of Moore’s law [2], which pre-
dicts the number of transistors on integrated circuits doubles approximately every two
years. However, as transistor sizes get increasingly close to the physical limits, the growth
specified by Moore’s law is unlikely to be sustainable, as pointed out in [3]. Moreover,
approaching the physical limits also makes semiconductor fabrication much more difficult,
making a severe impact on the yield of fabrication. It is observed that without tackling the
issue of yield, simply scaling up the number of transistors per chip, even if technologically
feasible, may not be economically viable [4].

This emerging issue motivates us to consider the problem of reliable circuit design
subject to fabrication flaws, which can be broadly categorized into process wvariations
and fabrication defects. Process variations refer to the variations in the attributes of
transistors (size, operating characteristics, etc.) introduced during fabrication [5], while
fabrication defects usually refer to transistors with severe performance degradation that
can be considered as failed ones. The challenge of process variations is especially salient
for analog circuits that rely on reference voltages, such as comparators and inverters,
and we investigate the problem of Flash Analog-to-Digital Converter (ADC) design with
imprecise comparators in Chapter 3. For the issue of fabrication defects, we provide an
analysis in Chapter 4 in the context of digital circuit design, where fabricated components
fail with a certain probability.

While Moore’s law may no longer be sustainable, our results suggest that it is likely
that we can continue to improve integrated circuit performance through better circuit
designs. The key insight is that we need redundancy to tackle unreliability, and we need
to take the statistical properties of fabrication flaws into account to make efficient use of
the introduced redundancy. This change may lead to new designs that is different from
the traditional designs that do not take unreliability into account.
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Chapter 3

Designing Flash ADC with imprecise comparators

B 3.1 Introduction

In this chapter we investigate process variation issue in semiconductor fabrication via an
example, the design of Flash ADC design with imprecise comparators, where the reference
voltages of comparators are subject to offsets due to process variations.

There exist investigations on the non-idealities of ADCs from both theoretical and prac-
tical perspectives. Existing theoretical investigations (cf. [6] and the references therein)
aim to improve the quantization (estimation) performance based on a given ADC design
via post-processing. However, this approach is not feasible when the process variations
are large, because the traditional designs do not meet the performance specifications any-
more. In this case, new ADC designs are called for. In the context of Flash ADC design,
it is shown that for large process variations, redundancy and reconfigurability achieves a
better trade-off between area and linearity [7] than increasing device size, and a series of
work in circuit systems [7-10] have explore the topic of Flash ADC design with redun-
dancy and/or reconfigurability. In these circuit design researches, simulations or empirical
measurements are used to evaluate performance, which are usually computation or labor
intensive. Furthermore, with little theory on the fundamental performance limits, it is
unclear that how one can compare different redundancy /reconfiguration implementations.
We address these issues by analyzing the performance limits of ADCs under process vari-
ations, and propose designs that make better use of redundancy by taking the statistical
property of process variations into account.

The problem of analog-to-digital conversion can be formulated as a quantization prob-
lem, a subject that has been thoroughly investigated in classical quantization theory [11].
A useful technique in classical quantization theory is high resolution analysis, which ap-
proximates a sequence of values by its point density function. This approximation simpli-
fies analysis and provides insights on the optimal quantizer design. In this investigation, we
first observe that reference voltages offsets of imprecise comparators correspond to offsets
to partition points in a quantization problem, and formulate the problem of ADC design
with imprecise comparator as a problem of scalar quantization with noisy partition points,
where partition points are perturbed from the designated values during the placement pro-
cess. Then we extend high resolution analysis to this new formulation, and investigate
how the choice of partition point density impacts the quantization performance, in terms
of mean square error (MSE), maximum quantization cell size and maximum quantization
error. With these results, we provide implications on both ADC design and technology
scaling.

We restrict our attention to the static performance of an ADC, i.e., when the input is a
DC or slowly varying signal, rather than the dynamic performance. This means we ignore
performance measures such as timing errors, signal bandwidth, sample-and-hold errors,
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etc.. For the high-speed ADC such as the Flash ADC, this corresponds to the best-case
baseline performance without taking dynamic effects into account.

The rest of the chapter is organized as follows. In Section 3.2, we introduce ADC and
the Flash ADC architecture, and describe the problem of Flash ADC design with imprecise
comparators. Then in Section 3.3, we first review the classical scalar quantization problem
setup and then formulate the problem of scalar quantization with noisy partition points
in Section 3.3.2. Then we extend the traditional high resolution analysis technique to the
case of noisy partition points in Section 3.4, and analyze the high resolution performance
in terms of MSE, maximum quantization cell size and maximum quantization error. In
Section 3.5, we show these results are accurate in the practical regimes of interest for
Flash ADC design, and derive implications on both ADC design and technology scaling.
Finally, we provide some concluding remarks in Section 3.6. We defer most proofs and
derivations in this chapter to Appendix A.

Notation

In addition to the notation introduced in Section 1.1, we introduce the following notation
in this chapter.

We let (f,g) denote the inner product of two functions on R, i.e., for f : R — R and
9:R=R (f.9) = [,cg f(2)9(z)d .

Given a sequence ¢, we denote the number of points in ¢” that falls in an interval
[a,b] by N (a,b;c"), ie.,

N(a,b;cn)ézn:]l{agcigb}. (3.1)
i=1

We say a,, ~ by, if a,, = b, (1 + &,) for some &, — 0 as n — oo.

B 3.2 Background

In this section we introduce ADC and the Flash ADC architecture, and describe the
problem of Flash ADC design with imprecise comparators, which motivates the problem
formulation in Section 3.3.2.

Most ADC designs are concerned with uniformly distributed input X, in which case
the optimal reference voltages should form an evenly spaced grid in the input range.
In this section we we restrict our attention to these uniform ADCs and introduce the
corresponding definitions and performance metrics. We remove this constraint later in
Section 3.3, where we define the problem of quantization with respect to general input
distributions.

B 3.2.1 ADC and performance metrics

An Analog-to-Digital Converter ADC is a device that converts analog (continuous-valued)
signals, usually voltages, to digital (discrete-valued) signals. This conversion process is
also known as quantization. Being the interface from the analog world to the digital world,
ADCs are essential parts in devices for communication, imaging, media and measurement.

Given an input signal vj, in the ADC input range [vio, vyi], @ b-bit ADC produces a
corresponding b-bit output code, based on the comparison of vy, with its reference voltages,
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Figure 3-1: The relationship between input v;, and output ADC code of an ideal 3-bit
uniform ADC. The black dots indicate reproduction point of each output code.

V1,V2,...,0n,n = 2° — 1. Conceptually, each output code corresponds to a reproduction
value ¢;, 1 < i < 8, which represents an estimate of the input value given the output code.
We say the full-scale range of an ADC is vpsr = vpi — U, and call the minimum voltage
change corresponding to an output code change the least significant bit (LSB) voltage of
an ADC, which is vpsgr/ 2. In addition, for convenience, we often denote vy = v}, and
Ung1 = Upi.

The input-output relationship of an ideal 3-bit uniform ADC is shown in Fig. 3-1,
which corresponds to b=3,n =7, and ¢; = v, + (i — 1/2)vsp, 1 <i<n+1.

As mentioned in Section 3.1, in this chapter we focus on the static performance of
ADCs. The commonly-used static performance metrics for ADC include mean-square
error (MSE), differential nonlinearity (DNL), and integral nonlinearity (INL).

Given an input X, MSE is a measure of the average square distortion between input
value X and its reproduced value X:

MSE = Ex [(X - X)Q] . (3.2)
When X is uniformly distributed, the MSE for the ideal b-bit uniform ADC is simply
vpsr/(12(n + 1)%).

In addition to the average-case performance measure MSE, DNL and INL are proposed
to measure the worst-case performance of an ADC. DNL [12] is the difference between the
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Figure 3-2: DNL and INL of a non-ideal 3-bit uniform ADC. The solid curve represents
the actual IO relationship of the ADC, and the dashed curve represents the ideal 10
relationship of the ADC.

largest actual quantization “step width” and the ideal “step width” vpsp!, while INL [12]
is the largest deviation of code transition from its ideal location:

A . oy —
DNL = Or%a;; (Vit1 — Vi — ULSB) , (3.3)
INL £ oy 4
lrg%);’vz UZ,IdG&l‘? (3 )

where v; jqeal = V1o + % - v1,sB in the case of uniform ADC?.

We often normalize DNL and INL by vr,sg and quote them in terms of LSB. In the
ideal case shown in Fig. 3-1, DNL and INL are simply 0. An example of the DNL and
INL of a non-ideal uniform ADC is shown in Fig. 3-2.

Note that both DNL and INL are independent of the input distribution. Furthermore,
Lemma A.1 indicates that the maximum quantization error (difference between v;, and

1A more refined definition of DNL represent it as a vector, where each element in the vector represent
the deviations correspond to each “step width” (code transition location). By contrast, the definition in
(3.3) is worst-case in nature, and we adopt this because they are more commonly used in practice due to
its simplicity.

2The definition of INL in (3.4) corresponds to the so-called “end-point” INL, and there is another INL
definition called the “best-fit” INL, where the ideal location of code transitions are decided by fitting a
line (in the least-square sense) to the measured code transitions. The latter method leads to a smaller INL
value and hence “end-point” INL can be seen as a lower bound to the “best-fit” INL.
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its reproduction value)

e = max max{v; — ¢, ¢ — V;—
max 1<i<n+1 { 7 15 &1 7 l}
is equal to INL 4 v,gp /2 for most values of v™. Therefore, INL can be seen as a proxy for
the maximum quantization error.

In addition to the quantization metrics mentioned above, resource usages such as power
and area are also important considerations in ADC design.

H 3.2.2 The Flash ADC architecture

The problem of ADC design has been well investigated [13,14] and there exists a variety
of ADC architectures that can be broadly divided into three categories, serial ADCs,
parallel ADCs (commonly called Flash ADCs), and subranging ADCs. Within serial
ADC architectures, there are a variety of choices such as Ramp/Integrating, Delta-Sigma,
Successive-Approximation (SAR), bit-serial pipelined and algorithmic ADCs.

In this paper we focus on the Flash ADC architecture. It is a high-speed (usually
defined as more than 20 MSPS?) ADC architecture with a straightforward implementation,
as shown in Fig. 3-3b: the input voltage is quantized by n = 2° — 1 comparators with
monotonically increasing reference voltages, and the output of these comparators form a
thermometer code that is encoded as a b-bit output. With its high speed, Flash ADC is
commonly used in high-speed communication, signal processing systems, as well as NAND
flash memory. In current Flash ADC designs usually b < 8, due to the size constraint of
the circuit.

Remark 3.1 (Thermometer code). A thermometer code represents a natural number
k with k ones followed by zeros. It is also known as the unary code. For example, given
a 8-bit ADC, the thermometer code for the ADC Code 000 (binary representation of 0) is
0000000 as all comparators output 0, while the thermometer code for the ADC Code 101
(binary representation of 5) is 1111100 as all but two comparators outputs 1.

The decoding of a thermometer code is straightforward. One can simply search from
left to right for location of the first 0 in the thermometer code. Alternatively, one can sum
up all bits in the thermometer code, which is more complicated but more robust [15].

Remark 3.2. Usually the INL of a Flash ADC is required to be less than 1LSB, with
typical value being 0.6LSB [16] or 0.75LSB [17]. The discussion in Section 3.2.1 implies
that 0.75LSB in INL essentially corresponds to 1.25LSB maximum quantization error.

The key building block of a Flash ADC is a bank of comparators, whose outputs indi-
cate the range that the input signal belongs to. As mentioned, in practice the comparators
are imprecise due to process variations. As Fig. 3-4a shows, the input-output relationship
of an imprecise comparator satisfies Yout = 1 {Vin + Zin > Viet + Zret } - Let Z = Ziy — Ziet,
then the output satisfies You = 1{Vin + Z > Vier}, where Z ~ N (0, 02) is the effective
fabrication offset and o2 = a% + 0’% is the effective fabrication variance, as both Zj, and

Zyef can be modeled as independent zero-mean Gaussian random variables [18,19].

3MSPS means “Million Samples Per Second”.
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(a) Block diagram of an ideal comparator (b) Block diagram for a b-bit Flash ADC,
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Figure 3-3: Flash ADC with ideal comparators.
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Figure 3-4: Flash ADC with imprecise comparators and calibration.

Remark 3.3. We emphasize that the reference voltages offsets are static in the sense that
they are determined at the time of fabrication and does not change afterwards.

To tackle process variations, recently Flash ADC designs with redundancy and possibly
reconfiguration are introduced to achieve good conversion resolution in the presence of
imprecise comparators [7-10]. By using more than 2° — 1 comparators and suitable encod-
ing, these designs improve the resolution and hence the effective number of bits (ENOB)
of the ADC. A diagram of flash ADC design with redundancy and calibration proposed
in [8] is shown in Fig. 3-4b, where the Calibration block measures the actual noisy fabrica-
tion reference voltages. Based on the calibration results, we may choose to disable certain
comparators, and use a corresponding encoding scheme, such as summing the output of
all comparators.

Remark 3.4 (Finite precision of calibration). In practice the calibration process is
only up to certain level of accuracy as the calibration process itself is an analog-to-digital

30



3.3. PROBLEM FORMULATION

process, and the calibration results, if stored on-chip, can only be stored with finite number
of bits. For example, on-chip storage of calibration results with 9-bit accuracy is imple-
mented in [8]. However, since the number of bits for storage is large enough, and the
calibration can be done via external high-precision ADCs, we assume calibration is fully
accurate as the calibration error can be made negligible in these cases.

B 3.3 Problem formulation

In this section we abstract the problem of designing flash ADC with imprecise comparators,
as described in Section 3.2, as the problem of scalar quantization with noisy partition
points. Before proposing the mathematical model and corresponding performance metrics
in Section 3.3.2, we first review the classical scalar quantization problem in Section 3.3.1
as our development can be seen as a generalization.

B 3.3.1 Classical scalar quantization problem

In the classical scalar quantization problem, an m-point scalar quantizer @, is a mapping
Qm : R — C, where C = {c1,...,¢m-1,¢m} C R is the set of reproduction values. A
quantizer Qy, (z;v™,C) is uniquely determined by its reproduction values C and its partition
points v™, where an input x is mapped to a value in C based on the quantization cell
(vi—1, v;] that z falls into. Given a scalar quantizer, we define the quantization error of an
input x as

e(x;0™,C) 2 |Qm (z;0™,C) — x| . (3.5)

Given an input X with p.d.f. fx, the MSE defined in (3.2) becomes
D (v",C) £ Ex [d(X;v",C)],
where d (+;-,-) is the square error function
d(z;0",C) 2 (& — Qu (z;0™,C))%.

When the input is not uniformly distributed, the definition of LSB is less clear, making
the definitions of DNL and INL not as meaningful. In this section we define the following
two error metrics that do not rely on the definition of LSB but still capture the essence
of DNL and INL in (3.3) and (3.4) when the input is uniformly distributed:

. . . . A
maximum quantization cell size: Sp = max |vit1 — v, (3.6)
0<i<n
. . . A
maximum quantization error: st = maxe (z;0",C). (3.7)
X

Comparing these two metrics with DNL and INL defined in (3.3) and (3.4), we can see
that sp corresponds to DNL and s; corresponds to INL. We note that sp is independent
of C.

Unconstrained reproduction values

In the classical quantization problem, the set of reproduction values C are often uncon-
strained, i.e., we can assign values in C to any real number. In this case, we choose
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m=n+1, ¢; € (vi_1,v;], and
Qm (z;0",C) =¢ if v € (vi—1,v], 1<i<n+1, (3.8)

where v1 < vy... < Uy, Vg = vy, and Unt1 2 Uhi.
In particular, scalar quantization theory indicates that the optimal C in the MSE sense
satisfies the centroid condition [11], i.e.,

Cl:E[X‘XE (vi,l,vi]],lgigm.

When the input is uniformly distributed, the centroid condition becomes the midpoint
condition, i.e.,
c; = (Ui,1 —|—UZ‘)/2, 1 <1 <m.

In this case, sp relates to the maximum quantization error via sp = 2s1 and hence there
is no need to discuss sy performance given performance in terms of sp.

Constrained reproduction values

In ADC design, it is often assumed the input is uniformly distributed and the set of
reproduction values C are predetermined, where

C; =S (Z - 1/2) - ULSB + Vlo-

In this case, it is more meaningful to use s; as it takes constrained reproduction values
into account.

Remark 3.5. Whenm is large, say m = 2'6, the set C,, is so dense that we can essentially
consider it as the unconstrained case.

Based on the above discussion, we choose to use different performance metrics for the
cases of unconstrained and constrained reproduction values.

e When C is unconstrained, we use MSE and maximum quantization cell size sp to
evaluate quantization performance. In particular, when discussing the MSE per-
formance, we restrict our attention to the centroid reconstruction. In this case, a
scalar quantizer is uniquely determined by its partition points v™ and we denote the
corresponding MSE by D (v").

e When C is constrained, we focus on the maximum quantization error sy as the
performance metric.

B 3.3.2 Scalar quantization with noisy partition points

In this section we introduce the problem of scalar quantization when the partition points
are subject to random variations. More specifically, an m-point scalar quantization is ran-
domly generated by drawing each partition point ¥; in independently from a distribution

Fy, and we denote the quantizer as Q, (-; Ve, C).
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In this setting, all performance metrics become random variables. We let the random

variable corresponding to maximum quantization cell size be Sp (V") and maximum

quantization error be St (V”,C). Then noting the size of the i-th quantization cell is
‘7(i+1) — f/(l-) (cf. Section 1.1 for the definition of 17(i)),

90 (V) = goizx (Ve = Vio) 9)
St (V”,C) = maxe (x;V",C) . (3.10)

In addition, we take expectation over the random partition points V" when calculating
the MSE, which leads to

MSE 2 E, [D (V”)] . (3.11)

Remark 3.6. In (3.11) the expectation w.r.t. V" indicates we are averaging over different
realizations of the partition points. Therefore, MSE here is the average of the mean-square
error of an ensemble of quantizers, and an achievable MSE does not guarantee that all
quantizers in this ensemble can achieve this MSE.

For the problem of scalar quantization with noisy partition points, we investigate how
the set of distributions {Fffi } impacts the system performance metrics in (3.9) to(3.11).

To investigate this, we derive results by extending the high resolution analysis in classical
scalar quantization theory to the setting with noisy partition points in Section 3.4.

More specifically, for the ADC with imprecise comparators model in Section 3.2, if we

. ~ indep. . .
design the reference voltages to be v™, then V; PPN (vi, 0'2) .1 <i < n. Given o2, we

utilize the theory in Section 3.4 to investigate how the choice of v™ impacts performance
metrics, and present the detailed investigation in Section 3.5.

Remark 3.7. The problem of quantization with uniformly distributed partition points for
the uniform input distribution has been investigated in [20], under a different motivation,
and it turns out to be a useful building block in our analysis.

B 3.4 High resolution analysis for noisy partition points

In this section we extend the high resolution analysis technique to the case of scalar quan-
tization with noisy partition points. High resolution analysis analyzes the performance of
a quantizer as the number of partition points approaches infinity, and approximate this
sequence of partition points by a point density function. For the classical quantization
problem in Section 3.3.1, high resolution analysis of MSE [21-23] leads to mathemati-
cal tractable performance results and yields useful approximate results for MSE-optimal
quantizer design. We apply the high resolution analysis techniques to the problem in
Section 3.3.2. We analyze not only MSE but also maximum quantization cell size Sp and
maximum quantization error St, in Section 3.4.1, Section 3.4.2 and Section 3.4.3 respec-
tively. While the analysis for maximum quantization cell size and maximum quantization
error is straightforward in the classical case, it is non-trivial in the case of quantization

33



CHAPTER 3. DESIGNING FLASH ADC WITH IMPRECISE COMPARATORS

with noisy partition points, because the variation in partition point location induces a ran-
dom ordering of the partition points, as the order statistics in (3.9) indicates. Combining
tools from order statistics and high resolution analysis, we derive analytical expressions
for MSE and the distribution of Sp and S;. Then in Section 3.5, we apply these results
to gain more insights on ADC performance and obtain better Flash ADC designs.

We defer most proofs and derivations in this section to Appendix A.2.

We first introduce one of the key ideas in high resolution analysis, point density func-
tion, via which we can approximate a sequence of values as a density function.

Definition 3.1 (Point density function). A sequence of values v™ is said to have point
density function A(x) if

1
A(z) = lim lim —5N(:U,a: +6;0"), zeR. (3.12)

d—0n—oo N,

Given a point density function A and n, we could “sample” n partition points v'" by letting
vl =F(i/(n+1)),1<i<n, (3.13)

where F) () is the c.d.f. corresponds to A. This establishes an one-one correspondence
between a point density function and a sequence of partition points.

Example 3.1. For A\ ~ Unif([—1,1]), then the v'" corresponds to A(-) is an n-point evenly
spaced grid in [—1,1].

We can generalize the concept of point density function to the case of noisy partition

points, where we represent each partition point by a random variable. Let W™ be the

i . indep. . . .
n random partition points, where W; ' ~" fw; (+), then we say fy (+) is a point density

function for W™ if

1
fiw(z) = lim lim —Ewn [N(z,z+ 6 W")], x€R. (3.14)

5—0n—o00 NG
In particular, when W; - fw, fi in (3.14) becomes fiy .

While we do not have full control on the location of the partition points as they are
random variables, in some applications we may be able to influence their locations by
controlling certain parameter of the random variable. In the context of Flash ADC design
with reference voltage offsets, we have each W; being a Gaussian random variable with
certain mean v; and variance o2. The variance o2 is determined by the fabrication process,
but we can design the means v™ to impact the point density function fj (-). Therefore, by
understanding how fj (-) impacts the quantization performance, we design v™ accordingly,
as we shall see in Section 3.5.

In the following few sections, we analyze the performance of quantization with noisy
partition points via high resolution analysis. In particular, we derive the functional rela-
tionship between fj5 (-) and performance metrics (MSE, maximum quantization cell size
and maximum quantization error).
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B 3.4.1 High resolution analysis of MSE

In this section we develop an analogous result to the high-resolution approximation of
MSE for non-uniform quantization, as Bennett [21] first did for the classical quantization
problem.

High resolution approximation of MSE: given input X with p.d.f. fx and n ran-
dom partition points W”, each with p.d.f. fyy,, if the set of densities { fi,,1 < i < n}
are smooth over Supp(fx) and corresponds to the point density function f (-) defined
in (3.14), then in the high resolution regime,

Ex o [d (X, W] ~ 2%2 / fx (@) f2(x) da, (3.15)

provided that the integral in (3.15) is finite (in particular, Supp(fy) D Supp(fx)).

The related derivations are presented in Appendix A.2.1.

Remark 3.8. In the classical scalar quantization problem, the partition points are de-
terministic. Therefore, given fi (), if a sequence of (non-random) partition points v™
correspond to point density function fy (-), i.e.,

(@) § = LNz, 2+ 607),
n

where v" can be obtained via (3.13). Bennett [21] shows for a quantizer with partition
points v, the high-resolution approximation of MSE satisfies

1
12n2

MSE ~ / fx (@) f77 () da, (3.16)
which is exactly 1/6 of (3.15). The increase of MSE in (3.15) with respect to (3.16)
comes from the random sizes of quantization cells, because the increase in square error
due to larger cells outweighs the decrease in square error due to smaller cells.

Remark 3.9. Since high resolution approximation requires sufficiently many points in
each small interval within the support of fx, the smaller the minimum of fy, () over fx,
the larger n we need to achieve the high resolution approximation. The Monte-Carlo sim-
ulations in Fig. 3-5 demonstrate this effect for different fx with fw, i fw ~ N(O, 02),
where a smaller o leads to smaller minimum of fy, (-) over fx, and hence a larger n is

needed for the high resolution approzimation to hold.

B 3.4.2 High resolution analysis of maximum quantization cell size

With noisy partition points, the maximum quantization cell size Sp is a random quantity
and in this section we derive its c.d.f. in the high resolution regime. We restrict our
attention to an input distribution with finite support [a, b] as otherwise Sp is infinite. As
discussed in Section 3.3.1, this performance measure is most meaningful when the set of
output codes C is unconstrained.
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Figure 3-5: The ratio of Ex yn [d (X, W™)] obtained from Monte-Carlo simulations and
numerical calculations of the integral in (3.15) for a variety of fx(-) and fi(:).

High resolution analysis of the maximum quantization cell size: given input
X with p.d.f. fx, where Supp(fx) = [a,b], and n independent random partition
points W™, each with p.d.f. fyy,, if the set of densities {fw,,1 <i <n} are smooth
over [a, b] and corresponds to the point density function fy; () defined in (3.14), then
in the high resolution regime,

P[Sp (W") < s ~exp{ /fW e~ s fw )dw}, (3.17)

provided fy () > 0 for any x € [a, b].

Remark 3.10. The requirement fy (xz) > 0 for any x € [a,b] is crucial in the asymptotic
approximation (3.17), as the approrimation use the fact that for any interval with size s
within [a,b], there are sufficiently many number of partition points in the interval.

In particular, the right hand side in (3.17) is a poor approximation for P [Sp (W) < s]
when the assumption fyy > 0 is violated. For example, when fy (x) =0 for any = € [a,b),

b
exp {—n/ Fir (w) e fw () dw} =1.

As a result, we cannot obtain a design that achieves small Sp (W™) by finding the fy (-)
that minimizes the right hand side of (3.17).

With (3.17), we can derive the range of Sp in the high resolution regime.
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Range of maximum quantization cell size: in the high resolution regime,
1 logn 1 logn
—_ < MN< —— .
bl g, = Sp (W) < f[a,b] - —1 (3.18)
max min
as n — 0o, where
haa = max fiy (), (3.19)
z€la,b]
Fetl e yin fo (2). (3.20)
z€[a,b]

The related derivations are presented in Appendix A.2.2.

Remark 3.11. When n partition points form an evenly spaced grid in |a, b, the mazimum
quantization cell size is (b—a)/(n+1). Therefore, (3.18) indicates in the high resolution
regime, the randomness in partition locations leads to an order of logn increase in the
mazimum quantization cell size.

B 3.4.3 High resolution analysis of maximum quantization error

In this section we derive the c.d.f. of St in the high resolution regime. Again, we restrict our
attention to an input distribution with finite support [a, b] as otherwise St is infinite. As
discussed in Section 3.3.1, when the set of output codes C is unconstrained, the maximum
quantization error is exactly half of the maximum quantization cell size. Hence in this
section we focus on the case that C is constrained, where this performance measure is most
meaningful. In particular, we choose C = C,, that corresponds to the reproduction values
of a uniform ADC, i.e., the midpoints of an evenly spaced grid in [a, b],

ci=a+((b—a) (i—05)/m, 1<i<m. (3.21)

These results regarding C,, are applied in Section 3.5, and it is not hard to see that our
analysis can be extended to other choices of C as well.

High resolution analysis of maximum quantization error: given input X with
p.d.f. fx, where Supp(fx) = [a,b], and n independent random partition points W™,
each with p.d.f. fuw,, if the densities fyy,,1 < i < n are smooth over [a,b] and corre-
spond to the point density function fj () defined in (3.14), then in the high resolution
regime,

P|St (W™, Cp) < b-a, s] ~1— ie—”pi(s) (3.22)

’ - 2m — ’

where p;(s) £ Fyy (¢; + s) — Fyy (¢; — s) & 2y (¢;) s and provided that f}, (z) > 0 for
any z € [a,b].
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X comparison — Y™ — reconstruction g(-) — X
K Frn
p™ —{ fabrication VAL calibration

Figure 3-6: Block diagram of a Flash ADC with imprecise comparators. X is the input
signal, v™ are the designed reference voltages and the V" are the fabricated reference
voltages, which is a noisy version of v™. A comparison of X and V" leads to the comparator
outputs Y. The reconstructor g(-,-) takes both Y™ and V™ to produce X € C.

Based on (3.22) we derive a result on the range of the maximum quantization error.

The range of maximum quantization error: in the high resolution regime, for
C, with values specified in (3.21), and any ¢ > 0,

11 b— 11 ¢
< S (W C) — < OBMALl S et (3.23)
2 a, n 2m 2 [a.vb} n

fmax fmln

as n — 0o, where fr[r(llé?! and f[a’b] are defined in (3.19) and (3.20).

min

The related derivations are presented in Appendix A.2.3.

Remark 3.12. When m — 1 partition points form an evenly spaced grid in [a,b], the
mazimum quantization error is (b — a)/(2m). Therefore, (3.23) indicates in the high
resolution regime, the randomness in partition locations leads to an increase on the order
of logm/n in mazimum quantization error.

B 3.5 Applications to Flash ADC design

In this section we apply results developed in Section 3.4 to the problem of Flash ADC
design with imprecise comparators described in Section 3.2.2. This problem can be de-
scribed by the framework of scalar quantization with noisy partition points, as the diagram
in Fig. 3-6 indicates. More specifically, for a given ADC, we design the comparators to
have reference voltages v™, and the resulting fabricated reference voltages V"™ are inde-

pendent random variables that satisfy Vv ko (vi, 02). The output Y; of comparator ¢
satisfies

Yl:JI{X>VZ-},

where X is the input signal. The fabricated reference voltages are provided to the decoder
via the calibration process, and the reconstructor g(-,-) takes both Y™ and V" to produce
X €, an estimate of X.

For this formulation, we ask the following question:
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How should we design v™ such that a Flash ADC with imprecise comparators
still achieves good performance in terms of MSE, maximum quantization cell
size, and maximum quantization error?

To answer this question, we use the idea of high resolution analysis again, and represent
the v™ by its point density function 7(z), and let ¢(-) be the probability density function
for Gaussian distribution N (0,02), where ¢ > 0. We first analyze the expected number
of fabricated reference voltages in each small interval [z, x + dx] and obtain the following
result:

Lemma 3.1. 1 i
ﬁE [N <:J:,x + dx; V”)} ~ (1 * ¢)(z)dz.

We defer all proofs and derivations in this section to Appendix A.3.
Then by (3.14), the resulting point density function of the random partition points
A(+) (which corresponds to fy (+) in (3.14)) is the convolution of two densities 7 and ¢

AMz) = (1% @) (), (3.24)

where * indicates convolution, i.e.,

(f*9) é/f(t) gz —t)dt.

This leads to the relationship summarized in Fig. 3-7, where we can design v", and
the system performance is determined by V. Noting that results in Section 3.4 imply
how the ADC performance metrics relate to A, and (3.24) shows how A relates to 7, we
derive how 7 impacts ADC performance in terms of MSE in Section 3.5.1, which provides
us with insights on designing v™ in Section 3.5.2. In addition, we analyze the technology
scaling in Section 3.5.3.

high res. approx. )
A(') < > VTI

A sample A

Vi=vi + Z;
Z o) ~N (0.02)

high res. approx.
() =2 > U
“sample”

Figure 3-7: Relationship between the design and fabricated reference voltages and their
point density functions.
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B 3.5.1 MSE-optimal partition point density analysis

In this section we investigate the point density function 7 of designed reference voltages
that minimizes MSE for a general input distribution, and then specialize our results to
both Gaussian and uniform input distributions to obtain the corresponding MSE-optimal
reference voltage designs.

Following (3.15) and (3.24), the MSE of a Flash ADC with imprecise comparators
satisfies

Ey [d (X V” / Fx(@)A"2(z) dz. (3.25)

(3.25) indicates the integral

5= / Fx(@)(r + )2(z) da (3.26)

is the key quantity in MSE calculation, and in this section we characterize the 7* that
minimizes R(7) in a variety of scenarios of interest.

Remark 3.13. [t is not hard to see that for a fized n, taking o — 0 leads to high resolution
approzimation in (3.16) rather than (3.15), as 0 = 0 corresponds to the classical ADC
design with no reference voltage offsets. When o > 0, (3.15) holds as n — co. Howewver,
if an ADC design corresponds to an n that is not too large, then using (3.16) to calculate
MSE may be more appropriate, because the convergence of MSE to (3.15) depends on n,
as indicated in Fig. 3-5. However, as both MSE expressions share the integral (3.26), the
search of T that minimizes (3.26) is beneficial regardless of the regime we operate in.

Theorem 3.2. 7% minimizes R(7) if and only if

mletdnsiate) o

In particular, if there exists a T such that

1/3

T ko f

([

Note (3.28) and (3.29) corresponds to the classical Panter-Dite formula [22].
Based on Theorem 3.2, we can derive the optimal 7 when the input distribution is
Gaussian or uniformly distributed.

(3.28)

then 7% minimizes R(T) and

Theorem 3.3 (Gaussian input distribution). When X ~ N (0,0%),

. N (O, 30% — 02) when 30% > o?
T ~ ,
d(x) when 30% < o?
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and
6\/37?(7%( when 303( > o2
R(T%) =

2103 /\/0% — 20%  when 30% < o%’

Theorem 3.4 (Uniform input distribution). When X ~ Unif([—1,1]) and o > oy,
where og is a constant and og ~ 0.7228, 7(x) = §(x) and

1 72
R(t™) = 27702/0 exp (_W) dx.

Remark 3.14. While in current circuit design the value of o is often much less than the
ADC input range (with the exception of [9]), our results may turn out to be important with
aggressive technology scaling that eventually lead to o values that are on the same order
of the ADC input range.

Remark 3.15. For both Gaussian and uniform input distributions, when o large enough,
7(x) = d(x). In this case, simply aiming to place all partition points at x = 0 and letting
the noisy placement process spread them out naturally is optimal in terms of MSE.

When the input is uniform and o < oy, we do not have a closed form expression for 7*
and instead we search for it via numerical optimization. Noting that the classical Lloyd-
Max iterative algorithm no longer applies as the placement of partition points is subject
to random variations, we propose an alternative algorithm guarantees convergence to local
optimum. In particular, we approximate 7* by a discrete distribution 7, where

k

7(z;p,a) = Zpi(é (r—a;)+0(z+a;)),
i=0

where a; > 0 and the symmetry of 7* follows from the symmetry of fx. Without loss of
generality, we assume ag = 0. Then we find the best p and a that corresponds to 7* that
minimizes R(7) via Algorithm 1.

Remark 3.16. Since the optimization problem is non-convex, Algorithm 1 only guaran-
tees that it converges to a local optimum rather than a global optimum. In practice we Tun
the algorithm with multiple randomly perturbed initial solutions to increase the probability
of reaching global optimum.

Some examples of 7* for different values of ¢ are shown in Fig. 3-8 on page 43.

In our numerical optimization procedure, we observe the phenomenon that the prob-
ability mass tends to concentrate to a few locations even when the initial solution has
non-zero probability mass at more locations, leading to the following conjecture.

Conjecture 3.5. For any o > 0, the optimal density T* is singular, i.e., has the form

k

#aip,a) =Y pi(d(x—a)+ 0 (z+a))
=0

for some p and a.
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Algorithm 1 Iterative optimization for 7.

pMV =1/(2k+1) for 0<i <k
oV =i/(k—1)for 1<i<k

Ey=0
Ei=R (f— (.;p(l),a(l)))
t=1

while |E;— E;_1| > ¢ do
pt*t = arg min, 7 (z; p, a(t))
al*1) = argmin, 7 (z; p(t“),a)
Erp1 = R (7 (; p®D, at+D))
t=t+1

end while

We note that a similar phenomenon has been observed in [24] and the proof technique
therein could be useful.

B 3.5.2 Flash ADC design with imprecise comparators

In this section we investigate the problem of designing a b-bit Flash ADC with imprecise
comparators. Without loss of generality, we assume the input range of the ADC is [—1, 1],
and hence the LSB of a b-bit ADC is 2/2°.

In this section we consider the Flash ADC to conform to the standard output interface,
i.e., a b-bit ADC has m = 2° output codes C,, = {¢;, 1 < i < m}, where

¢i=—1+(i—0.5)-2/m.

As discussed in Section 3.3, we use maximum quantization error as the main performance
metric.

As mentioned in Remark 3.2, in practice the requirement for maximum quantization
error is often in the range of 1LSB to 1.25L.SB. As an example, in the following sections we
analyze designs that achieve maximum quantization errors of less than 1LSB. Due to the
fabrication variation, it is unlikely that n = m — 1 comparators, which corresponds to n
reference voltages, can achieve the required maximum quantization error. Therefore, more
comparators are needed and we assume n = r(m — 1), where we say r is the redundancy
factor.

Below we first show that while it is possible to find Sr-optimal designs by minimizing
(3.22), empirically these designs achieve very similar performance with the MSE-optimal
designs obtained in Section 3.5.1, in terms of the c.d.f. of St (f/”) Then we show that
using MSE-optimal designs indeed leads to better S7 performance comparing to using
traditional designs, where v™ form an evenly spaced grid. Furthermore, we show that
given the same number of comparators n, using more than 2° reproduction points (e.g.,
m = 2'T1) improves S performance significantly as we can make better use of all the
fabricated comparators. Finally, we compare our design to stochastic ADC' [9], another
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Figure 3-8: 7*(z) and 7" * ¢(x) obtained from Algorithm 1 for uniform input distribution

over [—1,1], with & = 7 for all o values. The stems indicate 7(z) and the solid curves
indicate (7 * ¢)(x).

design that aims to take process variations into account, and demonstrate this intuitive
design, unfortunately, does not achieve good performance.

MSE-optimal and Si-optimal design achieves similar maximum quantization
error

We compare the Sp performance for 6-bit ADC designs obtained from optimizing (3.22)
and (3.15) respectively, at redundancy factor r = 6 and various values of 0. Fig. 3-9 show
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MSE-optimal, ¢ = 0.2
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Figure 3-9: Comparisons of c.d.f.s correspond to MSE-optimal and St-optimal designs for
b=06,r =6 and 0 = 0.2,0.5,0.8. The solid lines are computed based on (3.22) and the
dashed lines are obtained from Monte-Carlo simulations. The solid lines are only plotted
between asymptotic lower and upper bounds obtained from (3.23) with ¢ = 4.

that for all cases evaluated, the c.d.f.s of the two designs are essentially the same, and
hence we choose the MSE-optimal designs due to its simplicity as the locations of v™ are
more concentrated.
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MSE-optimal design is better than uniform design

We compare the S performance of the MSE-optimal design and the uniform design. In
the uniform design, the n = r(2° — 1) designed reference voltages v™ form a grid as follows:

Vit = Ui 1 <j <0< <20 -2, (3.30)

This design corresponds to the traditional uniform ADC design when r» = 1, and most
existing research works on Flash ADC with redundancy apply this design with r = 2 or r =
4 17,8]. Fig. 3-10 shows that for different values of o and appropriate redundancy factors
r, for a range of x within [0.75LSB, 1.25LSB|, MSE-optimal designs increases [P [S1 < z]
by 5%—10%! And this is achieved by simply modifying the design of reference voltages.
Alternatively, defining the yield as the maximum quantization error being less than 1LSB,
Fig. 3-11 shows how yield changes as ¢ increases, given a certain redundancy factor r.

Using more output codes reduces maximum quantization error

We compare the S7 performance for ADCs with the same number of comparators but
different number of output codes m. In particular, we consider the case of n ~ 2 com-
parators and m = 26,27 and 28 respectively, which corresponds to a 6-bit ADC with 8
times redundancy, a 7-bit ADC with 4 times redundancy, and an 8-bit ADC with 2 times
redundancy. Noting that 1LSB in 6-bit ADC is 2LLSB in 7-bit ADC and 4LSB in 8-bit
ADC, and letting the 1LSB for 6-bit ADC be A, Fig. 3-13 indicate that 6-bit ADC with
r =8 (n=r(2"—1) = 504 comparators) achieves P[S; < A] ~ 0.88, a 7-bit ADC with
r =4 (n = 508) achieves P[St < A] = 0.97, a 8-bit ADC with » = 2 (n = 510) achieves
P[S1 < A] =~ 1.0. A similar phenomenon can be observed for ¢ = 0.8 in Fig. 3-13 and the
increase is even more significant. Therefore, an 1-bit increase in output code could lead
to significant improvement in S7 performance, as with more reproduction values, we can
convey more information about the input, which is available from the fabricated compara-
tors. This phenomenon is demonstrated in Fig. 3-12, where we show that a 2-bit ADC
with reproduction values Cg can achieve smaller quantization error than the same ADC
with reproduction values Cy.

Remark 3.17. In practice, designers often use a higher resolution ADC' (say, 7-bit ADC)
when a quantization accuracy of a 6-bit ADC' is required, which naturally leads to perfor-
mance improvement in INL. However, as the number of comparators in traditional ADCs
satisfy n = 2° — 1, a 7-bit ADC has about two times the number of comparators, while in
our discussion above, all designs have the same number of comparators and hence using
more output bits does not lead to increase in the number of comparators.

Comparison with stochastic ADC

In circuit system research, [9] presents a design that explores the idea of high resolution
quantization. Assuming uniform input over [—o, o], their design corresponds to n in the
range of 1000 to 2000, and 7(z) = ¢ (x — 1.078¢) /24 (x 4+ 1.078¢) /2, with the rationale
of making the resulting density A = 7 ¢ as uniform as possible in the input range [—o, o].
However, as we showed in Theorem 3.4, the MSE-optimal solution is 7*(z) = d(z). As
Fig. 3-14 shows, assuming ¢ = 1, while Agiochastic 1S approximately flat in the input range
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Figure 3-10: Comparisons of c.d.f.s correspond to MSE-optimal and uniform designs for 6-
bit Flash ADCs. The “analytical” lines are computed based on (3.22) and the “simulated”
lines are obtained from Monte-Carlo simulation.

[—1,1], many partition points are wasted as they are out of the input range. Calculation
shows MSEgtochastic/ MSE* & 2.15, which corresponds to slightly more than 1 effective
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yield
1 +

0.8 T

0.6 T

0.4 1

—a— r = 8, MSE-optimal
0.2 1 —e— r = §, uniform
—8— r = 6, MSE-optimal

—e— r = 6, uniform
0 . . . } } } g
0 0.2 0.4 0.6 0.8 1 1.2

Figure 3-11: The probability of maximum quantization error less than 1LSB (yield) for
a 6-bit ADC with different designs and o values. The MSE-optimal designs are the ones
shown in Fig. 3-8, and the “uniform” designs are specified in (3.30).

number of bit (ENOB) difference. This is significant for the design in [9] with ENOB in
the range of 5 to 6 bits.

Remark 3.18. The above analysis shows that for the case of full calibration, the stochastic
ADC design is suboptimal. However, in [9] no calibration is used because the fabricated
reference voltages are essentially estimated. We expect the stochastic ADC to be suboptimal
comparing to the MSE-optimal design in the no-calibration case as well because its design
leads to too many wasted fabricated reference voltages.

B 3.5.3 Technology scaling

In this section we discuss how MSE, maximum quantization cell size and maximum quanti-
zation error scales as we fabricate more and more comparators in a fixed area. Section 3.3.1
shows that in classical quantization, when m = n + 1, for an ideal uniform ADC, MSE
scales with the number of quantization points n as 1/n?, and S; and Sp scales with the
number of quantization points as 1/n. Therefore, more ideal comparators improves quan-
tization accuracy. However, with process variations, the smaller the comparator, the larger
the reference voltage offsets. Therefore, it is unclear whether more but noisier comparators
improve quantization accuracy, and in this section we show that with calibration, more
but noisier comparators again improves quantization accuracy, although at a slower rate.

Remark 3.19. Given a b-bit ADC, increasing n means we increase the redundancy factor
r, which is defined in Section 3.5.2.

As large n leads to large o, we focus our attention to uniform input distribution
with 0 > o¢ (cf. Theorem 3.4 for the definition of o¢), where the MSE-optimal design
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Figure 3-12: The quantization regions and reconstruction points of two 2-bit ADCs with
different reproduction values. Both ADCs have exactly the same set of reference voltages,
which are indicated by the solid vertical lines, and the reproduction values are indicated
by the solid dots. The dashed vertical lines indicate an evenly spaced grid of [-1, 1], and
the small circles indicate the midpoint of each quantization cell formed by the reference
voltages.

corresponds to 7(x) = d0(x). As mentioned in Remark 3.15, 7(x) = 0(x) corresponds
to fabricating identical comparators with the same reference voltage, possibly leading to
simpler circuit implementations.

When 7(z) = 6(z), M(x) is simply the Gaussian p.d.f., i.e.,

1 x?
AMzx) = e 202
( ) 2o
Then over range [-1, 1],
1
Fhaxh = 2(0) = :
2o
_ 1 1
Sl = A1) = =32,
2ro

_ 1 .
where e 202 approaches 1 as ¢ increases. Therefore, when o large enough,

MSE ~ 2m0? /n?, (3.31)
1
Sp ~ V2mo 8" (3.32)

n

1
St ~ \/7/20 Oim. (3.33)
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Figure 3-13: c.d.f.s of MSE-optimal designs for 6-bit Flash ADC with (approximately)
the same number of comparators but different number of output codes at different values
of 0. The dashed lines are c.d.f. computed based on (3.22) and the solid lines are the
cumulative histograms of the S obtained from Monte-Carlo simulation.

Note that ¢ increases as the component size shrinks, which can be specified via the rela-
tionship [18,19] 02 oc 1/(Component area). Ignoring the wiring overhead, then the number
of components n is inversely proportional to the component area, i.e.,

n oc 1/(Component area) o< . (3.34)
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Figure 3-14: Comparison of the optimal \* with the stochastic ADC density Agtochastic- 1he
two dotted lines show the noisy partition point densities corresponding to 6 (z — 1.078) /2
and ¢ (x + 1.078) /2, which are {¢(z £ 1.078)/2} and sum to Agtochastic-

MSE Sp St
Classical O (1/n?) ©(1/n) O (1/n)
Process variation | O (1/n) | O (logn/v/n) | © (logm/\/n)

Table 3.1: The scaling of quantization accuracy for ADC in classical and process variation
settings.

Therefore, setting o = O (y/n), (3.31) to(3.33) indicate

MSE = O (1/n), (3.35)
Sp =6 (11)%1) , (3.36)
Si=0 <lo\%”> . (3.37)

We summarize the scaling of MSE, Sp and St in both the classical and process variation
settings in Table 3.1.

Remark 3.20. Taking wiring and other components in the circuit implementation into
account, our results indicate that as long as o increases at a speed slower than n/logn,
building more comparators reduces MSE, INL and DNL. Therefore, given a total silicon
area, we only need to allocate more than © (log2 n/n) fraction of the area to comparators,
making each comparator having an area of more than © (10g2 n/ n2) and hence correspond
to o less than © (logn/n). The rest of silicon area can be used for other circuit components
such as wiring and calibration logic.

Remark 3.21. [t is conceivable that as we continue scaling down the size of comparators,
the process variation may increase faster than the relationship indicated in (3.34), and
may no longer be Gaussian distributed. Then in this new regime (3.35) to (3.37) would
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not hold, and we need to analyze the problem by taking the new statistical property of the
process variation into account.

B 3.6 Concluding remarks

In this chapter we investigate the problem of building a reliable Flash ADC from imprecise
comparators. We formulate this problem as scalar quantization with noisy partition points,
and use high resolution analysis and order statistics to analyze fundamental limits in terms
of MSE, maximum quantization cell size and maximum quantization error. Our designs,
obtained based on minimizing the MSE, is effective in reducing maximum quantization
error, as demonstrated by both analytical and simulation results. In addition, our scaling
analysis shows that building more but noisier comparators is beneficial for quantization
accuracy.

Our research has shown the promise of building Flash ADC from imprecise compara-
tors, and to take it for practical implementation, we need to address the following issues:

e calibration: in some current implementations [8] is implemented on-chip, which oc-
cupies large amount of silicon area, and does not scale as we increase the number of
comparators. Therefore, it is desirable to move calibration off-chip, as it does not
need to be conducted often;

e dynamic performance: as mentioned in Section 3.1, we only analyze the static per-
formance of ADCs while in practice, the dynamic performance such as bandwidth
and timing errors are also important;

e power: with more comparators, the power consumption of an ADC is likely to go up,
and it is important to understand how power consumption scales with the number
of comparators.

The calibration issue motivates the problem of calibration-free or partial-calibration
ADC design. In this setting, we can assume a subset of the comparators are calibrated,
with the two extreme cases being no calibration and full calibration, and analyze how the
ADC performance degrades as we reduce the amount of calibration.

Another research direction that could lead to better ADC designs is reconfiguration,
which is used in [8] to disable comparators after fabrication. While this potentially reduces
the quantization accuracy, it is beneficial for power-saving due to smaller number of active
comparators. A good understanding on this trade-off between quantization accuracy and
power consumption could lead to better low-power ADC designs.

Finally, while in this work we focus our attention on Flash ADC, our results can be view
as a building block to other types of ADCs that have the Flash ADC as sub-components,
such as the pipelined ADC. Extending the analysis to other relevant ADC architectures
may lead to new trade-offs and help to improve more ADC designs.
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Chapter 4

Designing digital circuit with faulty components

B 4.1 Introduction

The challenge of component variations mentioned in Section 3.1 appears in not only in
analog circuits but also digital circuits. Due to the nature of digital circuits, component
variations often exhibit as component failures or component errors. Again, redundancy
and reconfiguration provides a way to combat component failures or errors, and in this
chapter we offer a preliminary investigation on various aspects of this approach, with our
focus on combinatorial circuits with possible component failures.

The idea of introducing on-chip redundancy, or redundancy in combinatorial circuit
design was first investigated in [25] and later by [26-28], where the focus was to achieve reli-
able computation from unreliable components, such as noisy gates, and errors occurrences
could be dynamic! for each component. These analysis shows a relative large amount of
redundancy is needed to achieve reliable computation.

However, in practice, fabrication defects are often static, i.e., fixed after fabrication,
and circuit designers use the approach of redundancy and reconfiguration after fabrication
for yield improvement [29]. In this approach, redundancy is usually introduced at the
design stage, and implemented by fabrication. Reconfiguration can happen right after
fabrication, where circuits are altered via Engineering Change Order (ECO), or it can
happen when the device is boot-up and after some built-in self-test (BIST) is conducted.
The BIST approach is popular for memory design due to the cost of in-factory test and
reconfiguration [30].

While there exists design and analysis for redundancy and reconfiguration in special
cases, especially random-access memory (RAM) [31-34], existing research usually relies
on specific assumptions about the underlying circuit implementation. In this chapter we
adopt the static fabrication error model, and take an abstract approach to analyze the
problem of circuit design with redundancy and reconfiguration. For a given reliability
requirement, we analyze the amount of additional resource needed in terms of both redun-
dancy and reconfigurability, and the fundamental trade-off between the two. These results
not only provide performance limits but also propose designs that achieve reliability with
relatively small amount of additional resource usage.

The rest of the chapter is organized as follows. In Section 4.2, we propose a mathemat-
ical model for the reconfigurable redundant circuit and identify design settings of interest.
Then we present analysis regarding the deterministic and probabilistic error correction
settings in Section 4.3 and Section 4.4 respectively, and finally conclude by discussing the
various implications of our analysis in Section 4.5.

! Dynamic means for each use of an element, the error occurs independently with certain probability.
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B 4.2 Problem formulation

In this section we first propose a redundant circuit model in Section 4.2.1, which is mo-
tivated by existing circuit designs with redundancy and reconfiguration. Then in Sec-
tion 4.2.2 we introduce the measures of resource usage, in terms of redundancy and recon-
figurability. With these resource usage measures, we categorize design settings into two
classes in Section 4.2.3, which lead to different performance trade-offs in terms of resource
usage.

B 4.2.1 The redundant circuit model

A circuit consists of a set of circuit elements and wires connecting these elements to achieve
some functionality, and we call these elements functional elements. Depending on the ap-
plication, the set of functional elements could be transistors, gates (AND gate, OR gate,
...), or circuit components (CPU, memory, ...). A circuit with redundancy and reconfig-
uration contains redundant elements in addition to functional elements, where redundant
elements are introduced to replace failed functional elements. The replacement process
can be achieved by enabling reconfigurable wires, which re-route inputs and outputs of
the element being replaced to the redundant element. In practical implementations, due
to routing constraints, a redundant element may not replace any functional element, but
rather functional elements in a certain subset (e.g., the ones that are not far from the
redundant element). Based on these observations, we propose the following redundant
circuit model that allows us to capture the aspects of redundancy, reconfiguration and
routing constraints. We consider all wiring to be reliable and restrict our attention to
the case of circuit element failures, where each functional or redundant element fails with
some probability.

Given a finite non-empty set of circuit elements X', we say a circuit has k functional
elements si, s, ..., S, where s¥ is chosen from a set of possible configurations S C X%
(e.g., the largest set of configurations is simply S = X*). In a redundant circuit, we add m
redundant elements r{,r9,...,r, and connect these redundant elements to the k elements
$1, 89, ..., Sk via a configurable interconnect £. By default all wires in the interconnect are
disabled. After fabrication, we test all elements in the circuit to obtain the set of failed
functional and redundant elements V; and U respectively, and enable a subset of wires in
the interconnect during reconfiguration. We say that the redundant element r; corrects
the functional element s; if there exists an enabled wire in £ between 7; and s;.

Based on the above description, we can model a redundant circuit and its error cor-
rection via graph-theoretic concepts.

Definition 4.1 (Graph-theoretic model for the redundant circuit). A redundant
circuit model C & C(s®,7™,G) consists of functional elements s*, redundant elements
r™ and a bipartite graph G = U, V,E), where U = {ri,r2,...,rm}, V = {s1,82,...,5k}
and £ C {(r,s),r €U,s € V} are the edges representing the configurable interconnect.

Given the set of failed functional and redundant elements Vr and Uz, a redundant circuit
correct all its errors if and only if there exists a Vi-saturated matching in the subgraph
Ge = (U \ Us, Vi, &), where E. are all edges in G that have one end point in U \ U and the
other in V;.
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(a) A redundant circuit that has two types (b) Circuit after test and reconfiguration,
of circuit elements (shaded and non-shaded), where the failed functional elements are V¢ =
with six functional elements and four redun- {s1, s2, 85, 86}, and are replaced by 71, o, r4
dant elements. The dashed lines represent the and r3 accordingly, as indicated by the match-
reconfigurable interconnect. ing consists of solid lines.

Figure 4-1: Example of an redundant circuit model and its reconfiguration process.

Given this graph-theoretic model, the reconfiguration process can be seen as finding a
Ve-saturated matching in G. and then enabled the edges in the matching.

Example of the redundant circuit model and its reconfiguration process are shown in
Fig. 4-1a and Fig. 4-1b. In Fig. 4-1a, there is an edge between the shaded redundant
element 73 and non-shaded functional element s5 as we may not know s% when designing
the graph G or r4. In Fig. 4-1b,

Remark 4.1. We do not need to model wires connecting functional elements because we
assume they are reliable and they do not change in the reconfiguration process.

B 4.2.2 Resource usage in the redundant circuit

In our redundant circuit model we introduce redundancy and reconfigurability to achieve
reliability. However, both redundancy and reconfigurability require additional resource
usage, in terms of the number of redundant elements and wires in the reconfigurable inter-
connect. These translate to additional silicon area usage?. When designing a redundant
circuit, we would like to minimize the overhead due to redundancy and reconfiguration,
and we first introduce the notions of circuit redundancy and wiring complexity to measure
the overhead due to redundancy and reconfigurability respectively.

Definition 4.2 (Circuit redundancy). For a given redundant circuit C = (s*,r™ G),
its circuit redundancy is the ratio of the number of redundant elements to the number of
functional elements, i.e.,

2They may lead to additional power consumption as well if the reconfigurable interconnect consumes
more power than regular wires.
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Definition 4.3 (Wiring complexity). For a given redundant circuit C = (s*,r™ G),
its wiring complexity is the number of wires between the redundant and functional elements
E(C) normalized by the number of functional elements, i.e.,

EC) £ |&|/k. (4.1)

As we shall see, given a certain reliability requirement, there may be a trade-off between
these two types of resource usages, i.e., between circuit redundancy and wiring complexity,
and we define the achievable region of the wiring complexity and circuit redundancy to
capture this trade-off.

Definition 4.4 (Achievable region of (E,p)). A pair (E,p) is achievable if there ex-
ists a sequence of circuits {Cg,k € ZT} such that

E = limyw E(Ch)
p =limg_ e p(Cr)

B 4.2.3 The redundant circuit design settings

As mentioned, we are interested in the trade-off between circuit redundancy and wiring
complexity, and this trade-off behaves differently, depending on the different amount of
information available at the design stage. In this section we identity the following two
different design settings that correspond to two different design scenarios.

General-purpose setting: design G and ™ based on §. We design G and ™ with
only knowledge about S, i.e., we do not know the exact s* to fabricate.

Application-specific setting: design G based on S and ™ based on s*. We design
G with only knowledge about S, but design 7™ after knowing the exact s* to fabri-
cate.

Depending whether |S| = 1, these two design settings correspond to different level of
customization in redundant circuit design, as shown in Table 4.1.

In the rest of this chapter, we evaluate the error correction capability of a redundant
circuit in two error correction settings, deterministic and probabilistic, in Section 4.3 and
Section 4.4 respectively. The main objective of our investigation is to characterize the max-
imal achievable region for redundant circuits under both deterministic and probabilistic
error correction settings and both general-purpose and application-specific settings.

Setting S| =1 S| >1
General-purpose given s¥, design both design both redundancy and inter-
interconnect and connect for all possible s¥ € S
Application-specific | redundancy design interconnect for all possible
sk € S, and then given s*, design
redundancy

Table 4.1: The design settings correspond to factory designs for different parts of the
redundancy circuit.

56



4.3. DETERMINISTIC ERROR CORRECTION SETTING

Name | Domain | Meaning
k VA The number of functional elements.
m 7+ The number of redundant elements.
t 7+ The number of element failures to correct.
d VA The maximum number of functional elements
that a redundant element can connect to.

Table 4.2: System parameters for reliable circuit design in the deterministic error correc-
tion setting.

B 4.3 Deterministic error correction setting

In this section we investigate the design of redundant circuit in the deterministic error
correction setting. By deterministic error correction we mean the case of guaranteed
correction of a certain number of functional element failures. More specifically, we say
a redundant circuit C is t-correcting for S if it corrects any t circuit element failures for
any s* € S. Furthermore, we simply say a redundant circuit is t-correcting when it is
t-correcting for S = X',

As mentioned in Section 4.2, we are interested in the trade-off between wiring com-
plexity and circuit redundancy, and we define the notion of capacity region to capture the
optimal trade-off of these two quantities.

Definition 4.5 (Capacity region in deterministic error correction setting). Given
S and a design setting (general-purpose or application-specific) and a set R of (E,p)
pairs, if (E,p) is achievable for some t-correcting redundant circuit for S if and only if
(E,p) € R, then we say the t-correcting redundant circuit for S has capacity region R.

Noting that in practice a redundant element may not be able to connect to too many
functional element, we impose a constraint on the graph G so that each node r € U has
degree at most d, with the unconstrained case simply being the special case d = k. With
this observation, we summarize the system parameters in Table 4.2.

Given S, k,t and d, we denote the capacity region in the general-purpose setting and
the application-specific setting as Rgp (S, k,t,d) and Ras (S, k, t, d) respectively.

We first state the following simple fact, without proof, regarding the achievable regions
for both the general-purpose setting and the application-specific setting.

Proposition 4.1. Given S and system parameters in Table 4.2, if (E, p) € Rap (S, k,t,d),
then (E,p) € Ras (S, k,t,d).

Given S, define the set of possible elements at each index i as A; (S) and its size as
ng, i.e.,

A (S) 2 {si sk e 3}, (4.2)
ni(8) 2 14 (S)]. (4.3)

Furthermore, we define the average of {n;,1 <1i <k} as n(S) = Zle n;/k.
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With these definitions, we characterize the capacity region for the general-purpose
setting in the following theorem.

Theorem 4.2 (Capacity region for the general-purpose setting). The capacity re-
gion for a t-correcting redundant circuit for S with k functional elements and degree con-
straint d under the general-purpose setting is

Rep (S k,t.d) = {(E, p) : E > ti(S), p > ta(S)/d} .

Remark 4.2. For the case of n(S) = |X|, the capacity region Ragp (S, k,t,d) is the region
marked by dashed lines in Fig. 4-2.

We defer the detailed analysis to Section 4.3.1 and present some results on the achiev-
able region for the application-specific setting, as the exact characterization for the capac-
ity region of this setting is still open. For simplicity, we only consider the § = X™.

Theorem 4.3 (Achievable region and converse for the application-specific setting).
When S = X*, the achievable region for a t-correcting redundant circuit with k functional
elements and degree constraint d under the application-specific setting satisfies

When d < |X|,
Ras (S, k,t,d) 2{(E,p) : E>t,p>t};

When d > |X|,

d—|X
Ras (S.huts) 2 {(Bp) s B2 0|1 Jdp = 092 =B (B=1) 4.

In addition, if E <t or p <t/d, then (E,p) ¢ Ras (S, k,t,d).

Theorem 4.3 is summarized in Fig. 4-2. and we defer the detailed discussion to Sec-
tion 4.3.2.

During the process of achievable region investigation, we discover the following two
design techniques, illustrated in Fig. 4-3, spatial sharing and circuit merging, that enable
us to generate new circuit designs with different performance parameters from existing
circuit designs.

Lemma 4.4 (Spatial sharing). Given two t-correcting redundant circuit Cy and Cy that
achieves (E1,p1) and (Eq, p2) respectively, then for any 0 < XA < 1, we can obtain a
t-correcting redundant circuit that achieves (E\, py), where

By = By + (1 — \) By,
px = Ap1+ (1 = A)p2.

Lemma 4.5 (Circuit merging). Given a ty-correcting redundant circuit C; and a to-
correcting redundant circuit Co that achieves (E1,p1) and (Ea, p2) respectively, then we
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Figure 4-2: Characterization of the capacity region for the application-specific setting:
the shaded area is the achievable region, and the dashed line is one (not-necessarily tight)
outer bound of the capacity region.

can obtain a ty + ta-correcting redundant circuit that achieves (E, p), where

t =11+ to,
E:E1—|—E2,
p=p1+p2.

We omit the proofs for Lemma 4.5 and Lemma 4.4 as they are straightforward.
B 4.3.1 Analysis for the general-purpose setting

In this section we characterize the capacity region of (E, p) for the general-purpose setting
by first proposing a redundant circuit design and then showing that it is indeed optimal.

The following redundant circuit construction algorithm finds the functional element
with the smallest normalized degree deg (s;) = deg (s;) /ni(S), and then for each of its
possible element type z € A; (S), we connect an available redundant element (with degree
less than d) of the same type to it. We repeat this process until all functional elements
have normalized degree ¢, which guarantees the redundant circuit is ¢-correcting. It is not
difficult to see that for a given k, Algorithm 2 produces a redundant circuit C; such that

tn+ |X| /k

E(Cy) =th+|X|d/k.
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(a) Spatial sharing. (b) Circuit merging.

Figure 4-3: Two circuit design techniques.

Therefore, given a sequence of redundant circuits {Cy, k € Z*}, we have

. tn
]
lim E(C) =tn
k—r00

for any 0 <t,d < k.
The following lemma shows the construction provided by Algorithm 2 is indeed opti-
mal.

Lemma 4.6 (Converse for the general-purpose setting). Given d and S, any
t-correcting redundant circuit for the general-purpose setting satisfies

t
p < En and E > tn. (4.4)

We defer the detailed proof to Appendix A.4.1.
B 4.3.2 Analysis for the application-specific setting

In this section we first note that the capacity region for t-correcting redundant circuits
are convex, which following follows from Lemma 4.4 directly.

Corollary 4.7. The capacity region for t-correcting redundant circuits is convex.

Now we derive the inner bound of the capacity region for the application-specific setting
based on a few specific designs.
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Algorithm 2 Construction of the optimal G = (U, V, £) for the general-purpose setting

Initialization: done + False, V < {s1,82,...,8k}, U + 0, & + 0,
while NOT done do

i* < arg min; deg (s;)

if deg (s;-) <t then

for z € A« (S) do
if Exists r € U such that deg (r) < d and r is a type-z element then
E— EU{(si=,7)}

else
Let r an element r with type x
U—UU{r}
E«— EU{(si=,7)}
end if
end for
else
done <+ True
end if
end while

Lemma 4.8 (Designs for application-specific setting).

(E =t,pt) € Ras (S, k. t,d) (4.5)
(E,p) € Ras (S, k. t,d) if E>t|X],p>t|X]|/d. (4.6)

Proof. (4.5) is achieved by the redundant circuits design Cq;, where each functional element
has its dedicated redundancy, as shown in Fig. 4-4. (4.6) follows from the fact that for
any S C AF,

7Q’AS (S, k7t7 d) 2 RGP (Xk7k7t7d> . O

We also derive the outer bound for the capacity region of application-specific setting.

Lemma 4.9 (Outer bound for the capacity region of application-specific setting).
In application-specific setting,

(a) any circuit that is t-correcting with E =t must have p > t,
(b) (Eyp) ¢ Ras (Svkvtad) ZfE <t,p< t/d

Proof. We defer the proof of (a) to Appendix A.4.2. (b) follows from the observation that
for any S € X*, Rap (sk, k:,t,d) D Ras (Xk, k,t, d), where s* is any element in S. O

Finally, Lemma 4.4 and Lemma 4.8 leads to the achievable region in Theorem 4.3, while
Lemma 4.9 leads to the converse in Theorem 4.3.
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Figure 4-4: Redundant circuit Cq,: each functional element has ¢t dedicated redundant
elements.

Comparing the general-purpose setting and the application-specific setting

In this section we show two examples to demonstrate the differences between the general-
purpose setting and the application-specific setting.

The first example shows how |X| impacts the error correcting capability differently in
these two settings.

Example 4.1. Given S = X*, for a redundant circuit C with adjacency matriz

Glk=2,m=2d=2) = E ﬂ

it is 1-correcting for both the general-purpose setting and the application-specific setting
when |X| = 2, but 1-correcting only for the application-specific setting when |X| = 3.

The second examples shows the error correcting capability in application-specific set-
ting in general depends on S and not just n(S).

Example 4.2. Given k =4,d =2,t =1 and X = 1,2, for application-specific setting, a
redundant circuit C with adjacency matrix

Glk=4,m=3,d=2)=

S O ==
O = = O
— -0 O

is 1-correcting when S = {all s* with type (3/4,1/4)} but not when S = X*.
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B 4.4 Probabilistic error correction setting

In this section we adopt a probabilistic error correction setting for the reliable circuit
design problem. We assume the elements in the redundant circuit fail independently with
probability €, and define the event of a circuit failure, i.e., the existence of functional
elements that cannot be corrected as follows:

F (sllf,rm7 g) £ {Given 7™ and G, s* cannot be fully corrected} ,

then the error probability in the general-purpose setting and the application-specific set-
ting can be expressed as

PSF(S) & glnlrgl gﬂlg};]? [.7: (sk,rm, g)}

P25 (8) £ min max min P [}' (sk,rm,gﬂ .
rmoskeS G

By the min-max inequality [35],
PSP (8) = P23 (S).

For a given design setting, we say a redundant circuit is e-reliable for § if it achieves
P, (S) — 0 in that setting as k — oo.

In our analysis, we first investigate the trade-off between circuit redundancy and wiring
complexity when the circuit is consists of a single-type of elements in Section 4.4.1, then
extend the results to multiple element types in Section 4.4.2.

As we shall see, for the circuits of interest in the probabilistic error correction setting,
the amount of interconnect |E| is on the order of klogk. As a result, we normalize the
wiring complexity by klog k and introduce a new definition of wiring complexity.

Definition 4.6 (Wiring complexity in probabilistic error correction setting). The
wiring complexity in probabilistic error correction setting is the same as Definition 4.3 ex-
cept (4.1) is changed to

E(C) = |€]/(klogk).

Again, we introduce the notion of capacity region, which is the central object of interest
in our analysis.

Definition 4.7 (Capacity region in probabilistic error correction setting). Given
S, a design setting (general-purpose or application-specific) and a set R of (E, p) pairs, if
(E, p) is achievable for some e-reliable redundant circuit for S if and only if (E,p) € R,
then we say the e-reliable redundant circuit for S has capacity region R.

B 4.4.1 Analysis of redundant circuit with a single element type

In this section we investigate the problem of designing redundant circuit when there is
only one type of element, i.e., |X| = 1. In this case the general-purpose setting and the
application-specific setting are equivalent. As we shall see later, results in this section
serve as useful building blocks for analysis of more general cases.

Our main results are summarized in the following theorem.
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Figure 4-5: The redundancy-wiring complexity trade-off for redundant circuit with one
type of element in the probabilistic error correction setting.

Theorem 4.10 (Redundancy-wiring complexity trade-off). If |X| = 1, then any
e-reliable redundant circuit requires

>e/(1—
pG) ze/(l-¢) (4.7)
E(G) > —1/lo