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Abstract

This thesis is devoted to the study of computing with unreliable resources, a paradigm
emerging in a variety of technologies, such as circuit design, cloud computing, and crowd-
sourcing. In circuit design, as we approach the physical limits, semiconductor fabrication
has been increasingly susceptible to fabrication flaws, resulting unreliable circuit com-
ponents. In cloud computing, due to co-hosting, virtualization and other factors, the
response time of computing nodes are variable. This calls for computation frameworks
that take this unreliable quality-of-service into account. In crowdsourcing, we humans are
the unreliable computing processors due to our inherent cognitive limitations.

We investigate these three topics in the three parts of this thesis. We demonstrate
that it is often necessary to introduce redundancy to achieve reliable computing, and this
needs to be carried out judiciously to attain an appealing balance between reliability and
resource usage. In particular, it is crucial to take the statistical properties of unreliability
into account during system design, rather than to handle it as an afterthought.

In the first part, we investigate the topic of circuit design with unreliable circuit com-
ponents. We first analyze the design of Flash Analog-to-Digital Converter (ADC) with
imprecise comparators. Formulating this as a problem of scalar quantization with noisy
partition points, we analyze fundamental limits on ADC accuracy and obtain designs that
increase the yield of ADC (e.g., 5% to 10% for 6-bit Flash ADCs). Our results show that,
given a fixed amount of silicon area, building more smaller and less precise comparators
leads to better ADC accuracy. We then address the problem of digital circuit design with
faulty components. To achieve reliability, we introduce redundant elements that can re-
place faulty elements via a configurable interconnect. We show that the required number
of redundant elements depends on the amount of interconnect available, and propose de-
signs that achieve near-optimal trade-off between redundancy and interconnect overhead
in several design settings.

The second part of this thesis explores the problem of executing a collection of tasks
in parallel on a group of computing nodes. This setting is often seen in cloud computing
and crowdsourcing, where the response times of computing nodes are random due to
their variability. In this case, the overall latency is determined by the response time of
the slowest computing node, which is often much larger than the average response time.
Task replication, which sends the same task to multiple computing nodes and obtains the
earliest result, reduces latency, but in general incurs additional resource usage. We propose
a theoretical framework to analyze the trade-off between latency and resource usage. We



show that, while in general there is a tension between latency and resource usage, there
exist scenarios where replicating tasks judiciously reduce both latency and resource usage
simultaneously. Our investigation gives insights on when and how replication helps, and
provides efficient scheduling policies for a variety of computing scenarios.

Lastly, we research the problem of crowd-based ranking via pairwise comparisons,
with humans as unreliable comparators. We formulate this as the problem of approximate
sorting with noisy comparisons. By developing a rate-distortion theory on permutation
spaces, we obtain information-theoretic lower bounds for the query complexity of ap-
proximate sorting with both noiseless and noisy comparisons. Our lower bound shows
the optimality of certain existing algorithms with respect to noiseless comparisons and
provides a benchmark for approximate sorting with noisy comparisons.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science
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reference voltages, which is a noisy version of vn. A comparison of X and
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Chapter 1

Introduction

If the world were perfect, it wouldn’t be.

Yogi Berra

In modern computing, we increasingly face the challenge of processing enormous
amount of data. Handling a large amount of data often requires a large amount of comput-
ing resources, and at a large scale, it is often economically inviable or even technologically
infeasible to maintain the reliability of each individual computing unit. These constraints
pose the challenge of computing with unreliable resources, where computing units could
be unreliable in a variety of ways.

The paradigm of computing with unreliable resources can be observed in many tech-
nologies or applications, such as VLSI circuit fabrication, cloud computing, and crowd-
sourcing. In VLSI circuit fabrication, as the sizes of transistors shrink, the issue of fab-
rication flaws become more severe. As a result, fabrication yield, the percentage of chips
that meet the fabrication specifications, decreases. In cloud computing, due to co-hosting,
virtualization and other factors, the response times of computing nodes are variable, even
when they all have the same configuration. Furthermore, computer failures are frequent
due to the scales of data centers. This calls for computation frameworks that take this
varying quality-of-service into account to achieve robust and efficient computation. Fi-
nally, in crowdsourcing, we are essentially using humans as unreliable processors to solve a
relatively complex problem by asking questions with answers in simple forms. This poses
challenges to both question design and answer aggregation.

All these scenarios involve building a reliable and efficient system with unreliable com-
ponents, a characteristic shared by the problem of communication in noisy environments.
For communication, information theory provides the key insight that by taking the sta-
tistical property of the noisy channel into account, we can introduce redundancy (coding)
efficiently and achieve reliable communication, as pointed out by Shannon in his seminal
paper [1]. In this thesis, we investigate how to introduce redundancy for a few computing
systems, and seek to answer the following two questions:

1. What is the fundamental trade-off between redundancy and performance (accuracy,
reliability, etc.)?

2. What is the proper way to introduce redundancy so that we can handle the unreliable
components in the system efficiently?

In particular, we analyze three applications in the three parts of this thesis. The first one
is reliable circuit design with fabricators flaws. We investigate the problem of designing
a Flash ADC with imprecise comparators, which provides an example of handling the
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issue of process variation in VLSI circuit fabrication. In addition, we analyze the problem
of designing a reliable digital circuit with faulty components, where faulty components
come from fabrication defects. The second application is scheduling parallel tasks with
variable response times. This type of scheduling problem occurs when we distribute a
collection of computation tasks among a group of computing nodes, a phenomena that
happens in both data centers and crowd sourcing. For this problem, we aim to reduce
the latency of the computation without too much additional resource usage. The third
one is approximate sorting with noisy comparisons, where we aim to sort a list of items by
comparing them in a pairwise fashion so that the end result is close to their ordering. This
problem is motivated by crowd-based ranking, a canonical example of crowdsourcing. Our
investigations of these three applications show that, by taking the statistical property of
unreliability into account, we can introduce redundancy efficiently to increase fabrication
yield, reduce computation latency and improve sorting accuracy.

A few common tools emerge in our analysis for these three different applications. First,
rate-distortion theory provides the framework for evaluating both the ADC design problem
in Chapter 3 and the approximate sorting algorithm in Part III. Second, order statistics
analysis plays a pivotal role in the ADC performance characterization in Chapter 3, and
also the scheduling problem in Part II. Finally, combinatorics and probabilistic methods
provide many useful techniques for the analysis in Chapter 4, Chapter 7, and Chapter 9.

The three parts of the thesis are largely independent and can be read separately. Fur-
thermore, within Part I, Chapter 3 and Chapter 4 are largely independent, and Chapter 9
in Part III is mostly self-contained.

� 1.1 Common notation

In this section we introduce the notation that is used throughout the thesis. Additional
problem-specific notation is introduced separately in each part of this thesis.

We use R to denote all real numbers, R+ all the non-negative real numbers, Z all
integers, and Z+ all positive integers.

For any number x, we denote

|x|+ = max {0, x} .

We use [n] to denote all positive integers no larger than n, i.e., the set {1, 2, . . . , n}.
We use xji , j > i to denote a sequence of values xi, xi+1, . . . , xj , and xn as a shorthand

for xn1 . We use the bold font to represent a vector, e.g., x , [x1, x2, . . . , xn].
We denote the indicator function by 1 {A}, where

1 {A} =

{
1 clause A is true,

0 otherwise.

We use the notation O (·), Ω (·) and Θ (·), where f(n) = O (g(n)) if and only if
lim supn→∞ |f(n)/g(n)| < ∞, f(n) = Ω (g(n)) if and only if lim infn→∞ |f(n)/g(n)| ≥ 1,
and f(n) = Θ (g(n)) if and only if f(n) = O (g(n)) and f(n) = Ω (g(n)).
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Probability: we use lower-case letters (e.g., x) to denote a particular value of the cor-
responding random variable denoted in upper-case letters (e.g., X). We denote the sup-
port of a probability density function (p.d.f.) fX by Supp(fX), namely, Supp(fX) ,
{x ∈ R : fX(x) > 0} .

We use “w.p.” as a shorthand for “with probability”, i.i.d. for “independent and iden-
tically distributed”, p.m.f. for “probability mass function”, p.d.f. for “probability density
function”, and c.d.f. for “cumulative density function”.

We use N
(
µ, σ2

)
to denote a Gaussian distribution with mean µ and variance σ2,

Unif ([a, b]) a uniform distribution over an interval [a, b], Bern (p) a Bernoulli distribution
with parameter p, and Exp (λ) an Exponential distribution with parameter λ.

Order statistics: for random variables X1, X2, · · · , Xn, we define Xj:n be the j-th order
statistics of Xi, 1 ≤ i ≤ n, i.e., the j-th smallest sample in {Xi, 1 ≤ i ≤ n}. For simplicity,
we also use X(j) to denote Xj:n when the number of random variables n is clear from the
context.
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Part I

Reliable circuit design with
fabrication flaws
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Chapter 2

On the challenge of yield in semiconductor

fabrication

Any physical quantity that is growing exponentially predicts a
disaster. You simply can’t go beyond certain major limits.

Gordon Moore, at the 2007 Intel Developer Forum

The semiconductor industry has enjoyed tremendous success in the past fifty years.
One highlight of this success is the continued realization of Moore’s law [2], which pre-
dicts the number of transistors on integrated circuits doubles approximately every two
years. However, as transistor sizes get increasingly close to the physical limits, the growth
specified by Moore’s law is unlikely to be sustainable, as pointed out in [3]. Moreover,
approaching the physical limits also makes semiconductor fabrication much more difficult,
making a severe impact on the yield of fabrication. It is observed that without tackling the
issue of yield, simply scaling up the number of transistors per chip, even if technologically
feasible, may not be economically viable [4].

This emerging issue motivates us to consider the problem of reliable circuit design
subject to fabrication flaws, which can be broadly categorized into process variations
and fabrication defects. Process variations refer to the variations in the attributes of
transistors (size, operating characteristics, etc.) introduced during fabrication [5], while
fabrication defects usually refer to transistors with severe performance degradation that
can be considered as failed ones. The challenge of process variations is especially salient
for analog circuits that rely on reference voltages, such as comparators and inverters,
and we investigate the problem of Flash Analog-to-Digital Converter (ADC) design with
imprecise comparators in Chapter 3. For the issue of fabrication defects, we provide an
analysis in Chapter 4 in the context of digital circuit design, where fabricated components
fail with a certain probability.

While Moore’s law may no longer be sustainable, our results suggest that it is likely
that we can continue to improve integrated circuit performance through better circuit
designs. The key insight is that we need redundancy to tackle unreliability, and we need
to take the statistical properties of fabrication flaws into account to make efficient use of
the introduced redundancy. This change may lead to new designs that is different from
the traditional designs that do not take unreliability into account.
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Chapter 3

Designing Flash ADC with imprecise comparators

� 3.1 Introduction

In this chapter we investigate process variation issue in semiconductor fabrication via an
example, the design of Flash ADC design with imprecise comparators, where the reference
voltages of comparators are subject to offsets due to process variations.

There exist investigations on the non-idealities of ADCs from both theoretical and prac-
tical perspectives. Existing theoretical investigations (cf. [6] and the references therein)
aim to improve the quantization (estimation) performance based on a given ADC design
via post-processing. However, this approach is not feasible when the process variations
are large, because the traditional designs do not meet the performance specifications any-
more. In this case, new ADC designs are called for. In the context of Flash ADC design,
it is shown that for large process variations, redundancy and reconfigurability achieves a
better trade-off between area and linearity [7] than increasing device size, and a series of
work in circuit systems [7–10] have explore the topic of Flash ADC design with redun-
dancy and/or reconfigurability. In these circuit design researches, simulations or empirical
measurements are used to evaluate performance, which are usually computation or labor
intensive. Furthermore, with little theory on the fundamental performance limits, it is
unclear that how one can compare different redundancy/reconfiguration implementations.
We address these issues by analyzing the performance limits of ADCs under process vari-
ations, and propose designs that make better use of redundancy by taking the statistical
property of process variations into account.

The problem of analog-to-digital conversion can be formulated as a quantization prob-
lem, a subject that has been thoroughly investigated in classical quantization theory [11].
A useful technique in classical quantization theory is high resolution analysis, which ap-
proximates a sequence of values by its point density function. This approximation simpli-
fies analysis and provides insights on the optimal quantizer design. In this investigation, we
first observe that reference voltages offsets of imprecise comparators correspond to offsets
to partition points in a quantization problem, and formulate the problem of ADC design
with imprecise comparator as a problem of scalar quantization with noisy partition points,
where partition points are perturbed from the designated values during the placement pro-
cess. Then we extend high resolution analysis to this new formulation, and investigate
how the choice of partition point density impacts the quantization performance, in terms
of mean square error (MSE), maximum quantization cell size and maximum quantization
error. With these results, we provide implications on both ADC design and technology
scaling.

We restrict our attention to the static performance of an ADC, i.e., when the input is a
DC or slowly varying signal, rather than the dynamic performance. This means we ignore
performance measures such as timing errors, signal bandwidth, sample-and-hold errors,
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etc.. For the high-speed ADC such as the Flash ADC, this corresponds to the best-case
baseline performance without taking dynamic effects into account.

The rest of the chapter is organized as follows. In Section 3.2, we introduce ADC and
the Flash ADC architecture, and describe the problem of Flash ADC design with imprecise
comparators. Then in Section 3.3, we first review the classical scalar quantization problem
setup and then formulate the problem of scalar quantization with noisy partition points
in Section 3.3.2. Then we extend the traditional high resolution analysis technique to the
case of noisy partition points in Section 3.4, and analyze the high resolution performance
in terms of MSE, maximum quantization cell size and maximum quantization error. In
Section 3.5, we show these results are accurate in the practical regimes of interest for
Flash ADC design, and derive implications on both ADC design and technology scaling.
Finally, we provide some concluding remarks in Section 3.6. We defer most proofs and
derivations in this chapter to Appendix A.

Notation

In addition to the notation introduced in Section 1.1, we introduce the following notation
in this chapter.

We let 〈f, g〉 denote the inner product of two functions on R, i.e., for f : R → R and
g : R→ R, 〈f, g〉 ,

∫
x∈R f(x)g(x)d x.

Given a sequence cn, we denote the number of points in cn that falls in an interval
[a, b] by N (a, b; cn), i.e.,

N (a, b; cn) ,
n∑

i=1

1 {a ≤ ci ≤ b} . (3.1)

We say an ' bn if an = bn(1 + εn) for some εn → 0 as n→∞.

� 3.2 Background

In this section we introduce ADC and the Flash ADC architecture, and describe the
problem of Flash ADC design with imprecise comparators, which motivates the problem
formulation in Section 3.3.2.

Most ADC designs are concerned with uniformly distributed input X, in which case
the optimal reference voltages should form an evenly spaced grid in the input range.
In this section we we restrict our attention to these uniform ADCs and introduce the
corresponding definitions and performance metrics. We remove this constraint later in
Section 3.3, where we define the problem of quantization with respect to general input
distributions.

� 3.2.1 ADC and performance metrics

An Analog-to-Digital Converter ADC is a device that converts analog (continuous-valued)
signals, usually voltages, to digital (discrete-valued) signals. This conversion process is
also known as quantization. Being the interface from the analog world to the digital world,
ADCs are essential parts in devices for communication, imaging, media and measurement.

Given an input signal vin in the ADC input range [vlo, vhi], a b-bit ADC produces a
corresponding b-bit output code, based on the comparison of vin with its reference voltages,
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Figure 3-1: The relationship between input vin and output ADC code of an ideal 3-bit
uniform ADC. The black dots indicate reproduction point of each output code.

v1, v2, . . . , vn, n = 2b − 1. Conceptually, each output code corresponds to a reproduction
value ci, 1 ≤ i ≤ 8, which represents an estimate of the input value given the output code.
We say the full-scale range of an ADC is vFSR , vhi − vlo, and call the minimum voltage
change corresponding to an output code change the least significant bit (LSB) voltage of
an ADC, which is vFSR/2

b. In addition, for convenience, we often denote v0 , vlo and
vn+1 , vhi.

The input-output relationship of an ideal 3-bit uniform ADC is shown in Fig. 3-1,
which corresponds to b = 3, n = 7, and ci = vlo + (i− 1/2)vLSB, 1 ≤ i ≤ n+ 1.

As mentioned in Section 3.1, in this chapter we focus on the static performance of
ADCs. The commonly-used static performance metrics for ADC include mean-square
error (MSE), differential nonlinearity (DNL), and integral nonlinearity (INL).

Given an input X, MSE is a measure of the average square distortion between input
value X and its reproduced value X̂:

MSE = EX
[
(X − X̂)2

]
. (3.2)

When X is uniformly distributed, the MSE for the ideal b-bit uniform ADC is simply
v2

FSR/(12(n+ 1)2).
In addition to the average-case performance measure MSE, DNL and INL are proposed

to measure the worst-case performance of an ADC. DNL [12] is the difference between the
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Figure 3-2: DNL and INL of a non-ideal 3-bit uniform ADC. The solid curve represents
the actual IO relationship of the ADC, and the dashed curve represents the ideal IO
relationship of the ADC.

largest actual quantization “step width” and the ideal “step width” vLSB
1, while INL [12]

is the largest deviation of code transition from its ideal location:

DNL , max
0≤i≤n

(vi+1 − vi − vLSB) , (3.3)

INL , max
1≤i≤n

|vi − vi,ideal| , (3.4)

where vi,ideal = vlo + i · vLSB in the case of uniform ADC2.
We often normalize DNL and INL by vLSB and quote them in terms of LSB. In the

ideal case shown in Fig. 3-1, DNL and INL are simply 0. An example of the DNL and
INL of a non-ideal uniform ADC is shown in Fig. 3-2.

Note that both DNL and INL are independent of the input distribution. Furthermore,
Lemma A.1 indicates that the maximum quantization error (difference between vin and

1A more refined definition of DNL represent it as a vector, where each element in the vector represent
the deviations correspond to each “step width” (code transition location). By contrast, the definition in
(3.3) is worst-case in nature, and we adopt this because they are more commonly used in practice due to
its simplicity.

2The definition of INL in (3.4) corresponds to the so-called “end-point” INL, and there is another INL
definition called the “best-fit” INL, where the ideal location of code transitions are decided by fitting a
line (in the least-square sense) to the measured code transitions. The latter method leads to a smaller INL
value and hence “end-point” INL can be seen as a lower bound to the “best-fit” INL.
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its reproduction value)

emax = max
1≤i≤n+1

max {vi − ci, ci − vi−1}

is equal to INL + vLSB/2 for most values of vn. Therefore, INL can be seen as a proxy for
the maximum quantization error.

In addition to the quantization metrics mentioned above, resource usages such as power
and area are also important considerations in ADC design.

� 3.2.2 The Flash ADC architecture

The problem of ADC design has been well investigated [13, 14] and there exists a variety
of ADC architectures that can be broadly divided into three categories, serial ADCs,
parallel ADCs (commonly called Flash ADCs), and subranging ADCs. Within serial
ADC architectures, there are a variety of choices such as Ramp/Integrating, Delta-Sigma,
Successive-Approximation (SAR), bit-serial pipelined and algorithmic ADCs.

In this paper we focus on the Flash ADC architecture. It is a high-speed (usually
defined as more than 20 MSPS3) ADC architecture with a straightforward implementation,
as shown in Fig. 3-3b: the input voltage is quantized by n = 2b − 1 comparators with
monotonically increasing reference voltages, and the output of these comparators form a
thermometer code that is encoded as a b-bit output. With its high speed, Flash ADC is
commonly used in high-speed communication, signal processing systems, as well as NAND
flash memory. In current Flash ADC designs usually b ≤ 8, due to the size constraint of
the circuit.

Remark 3.1 (Thermometer code). A thermometer code represents a natural number
k with k ones followed by zeros. It is also known as the unary code. For example, given
a 3-bit ADC, the thermometer code for the ADC Code 000 (binary representation of 0) is
0000000 as all comparators output 0, while the thermometer code for the ADC Code 101
(binary representation of 5) is 1111100 as all but two comparators outputs 1.

The decoding of a thermometer code is straightforward. One can simply search from
left to right for location of the first 0 in the thermometer code. Alternatively, one can sum
up all bits in the thermometer code, which is more complicated but more robust [15].

Remark 3.2. Usually the INL of a Flash ADC is required to be less than 1LSB, with
typical value being 0.6LSB [16] or 0.75LSB [17]. The discussion in Section 3.2.1 implies
that 0.75LSB in INL essentially corresponds to 1.25LSB maximum quantization error.

The key building block of a Flash ADC is a bank of comparators, whose outputs indi-
cate the range that the input signal belongs to. As mentioned, in practice the comparators
are imprecise due to process variations. As Fig. 3-4a shows, the input-output relationship
of an imprecise comparator satisfies Yout = 1 {Vin + Zin ≥ Vref + Zref} . Let Z = Zin−Zref ,
then the output satisfies Yout = 1 {Vin + Z ≥ Vref} , where Z ∼ N

(
0, σ2

)
is the effective

fabrication offset and σ2 = σ2
1 + σ2

2 is the effective fabrication variance, as both Zin and
Zref can be modeled as independent zero-mean Gaussian random variables [18,19].

3MSPS means “Million Samples Per Second”.
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(b) Block diagram for a b-bit Flash ADC,
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Figure 3-3: Flash ADC with ideal comparators.
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(b) Block diagram of a b-bit Flash ADC with
calibration, consisting of n ≥ 2b−1 compara-
tors.

Figure 3-4: Flash ADC with imprecise comparators and calibration.

Remark 3.3. We emphasize that the reference voltages offsets are static in the sense that
they are determined at the time of fabrication and does not change afterwards.

To tackle process variations, recently Flash ADC designs with redundancy and possibly
reconfiguration are introduced to achieve good conversion resolution in the presence of
imprecise comparators [7–10]. By using more than 2b−1 comparators and suitable encod-
ing, these designs improve the resolution and hence the effective number of bits (ENOB)
of the ADC. A diagram of flash ADC design with redundancy and calibration proposed
in [8] is shown in Fig. 3-4b, where the Calibration block measures the actual noisy fabrica-
tion reference voltages. Based on the calibration results, we may choose to disable certain
comparators, and use a corresponding encoding scheme, such as summing the output of
all comparators.

Remark 3.4 (Finite precision of calibration). In practice the calibration process is
only up to certain level of accuracy as the calibration process itself is an analog-to-digital
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process, and the calibration results, if stored on-chip, can only be stored with finite number
of bits. For example, on-chip storage of calibration results with 9-bit accuracy is imple-
mented in [8]. However, since the number of bits for storage is large enough, and the
calibration can be done via external high-precision ADCs, we assume calibration is fully
accurate as the calibration error can be made negligible in these cases.

� 3.3 Problem formulation

In this section we abstract the problem of designing flash ADC with imprecise comparators,
as described in Section 3.2, as the problem of scalar quantization with noisy partition
points. Before proposing the mathematical model and corresponding performance metrics
in Section 3.3.2, we first review the classical scalar quantization problem in Section 3.3.1
as our development can be seen as a generalization.

� 3.3.1 Classical scalar quantization problem

In the classical scalar quantization problem, an m-point scalar quantizer Qm is a mapping
Qm : R → C, where C = {c1, . . . , cm−1, cm} ⊂ R is the set of reproduction values. A
quantizerQm (x; vn, C) is uniquely determined by its reproduction values C and its partition
points vn, where an input x is mapped to a value in C based on the quantization cell
(vi−1, vi] that x falls into. Given a scalar quantizer, we define the quantization error of an
input x as

e (x; vn, C) , |Qm (x; vn, C)− x| . (3.5)

Given an input X with p.d.f. fX , the MSE defined in (3.2) becomes

D (vn, C) , EX [d (X; vn, C)] ,

where d (·; ·, ·) is the square error function

d (x; vn, C) , (x−Qm (x; vn, C))2 .

When the input is not uniformly distributed, the definition of LSB is less clear, making
the definitions of DNL and INL not as meaningful. In this section we define the following
two error metrics that do not rely on the definition of LSB but still capture the essence
of DNL and INL in (3.3) and(3.4) when the input is uniformly distributed:

maximum quantization cell size: sD , max
0≤i≤n

|vi+1 − vi| , (3.6)

maximum quantization error: sI , max
x

e (x; vn, C) . (3.7)

Comparing these two metrics with DNL and INL defined in (3.3) and (3.4), we can see
that sD corresponds to DNL and sI corresponds to INL. We note that sD is independent
of C.
Unconstrained reproduction values

In the classical quantization problem, the set of reproduction values C are often uncon-
strained, i.e., we can assign values in C to any real number. In this case, we choose
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m = n+ 1, ci ∈ (vi−1, vi], and

Qm (x; vn, C) = ci if x ∈ (vi−1, vi], 1 ≤ i ≤ n+ 1, (3.8)

where v1 < v2 . . . < vn, v0 , vlo, and vn+1 , vhi.
In particular, scalar quantization theory indicates that the optimal C in the MSE sense

satisfies the centroid condition [11], i.e.,

ci = E [X|X ∈ (vi−1, vi]] , 1 ≤ i ≤ m.

When the input is uniformly distributed, the centroid condition becomes the midpoint
condition, i.e.,

ci = (vi−1 + vi)/2, 1 ≤ i ≤ m.
In this case, sD relates to the maximum quantization error via sD = 2sI and hence there
is no need to discuss sI performance given performance in terms of sD.

Constrained reproduction values

In ADC design, it is often assumed the input is uniformly distributed and the set of
reproduction values C are predetermined, where

ci , (i− 1/2) · vLSB + vlo.

In this case, it is more meaningful to use sI as it takes constrained reproduction values
into account.

Remark 3.5. When m is large, say m = 216, the set Cm is so dense that we can essentially
consider it as the unconstrained case.

Based on the above discussion, we choose to use different performance metrics for the
cases of unconstrained and constrained reproduction values.

• When C is unconstrained, we use MSE and maximum quantization cell size sD to
evaluate quantization performance. In particular, when discussing the MSE per-
formance, we restrict our attention to the centroid reconstruction. In this case, a
scalar quantizer is uniquely determined by its partition points vn and we denote the
corresponding MSE by D (vn).

• When C is constrained, we focus on the maximum quantization error sI as the
performance metric.

� 3.3.2 Scalar quantization with noisy partition points

In this section we introduce the problem of scalar quantization when the partition points
are subject to random variations. More specifically, an m-point scalar quantization is ran-
domly generated by drawing each partition point ṽi in independently from a distribution

FṼi , and we denote the quantizer as Qm

(
·; Ṽ n, C

)
.
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In this setting, all performance metrics become random variables. We let the random

variable corresponding to maximum quantization cell size be SD

(
Ṽ n
)

and maximum

quantization error be SI

(
Ṽ n, C

)
. Then noting the size of the i-th quantization cell is

Ṽ(i+1) − Ṽ(i) (cf. Section 1.1 for the definition of Ṽ(i)),

SD

(
Ṽ n
)

= max
0≤i≤n

(
Ṽ(i+1) − Ṽ(i)

)
, (3.9)

SI

(
Ṽ n, C

)
= max

x
e
(
x; Ṽ n, C

)
. (3.10)

In addition, we take expectation over the random partition points Ṽ n when calculating
the MSE, which leads to

MSE , EṼ n
[
D
(
Ṽ n
)]
. (3.11)

Remark 3.6. In (3.11) the expectation w.r.t. Ṽ n indicates we are averaging over different
realizations of the partition points. Therefore, MSE here is the average of the mean-square
error of an ensemble of quantizers, and an achievable MSE does not guarantee that all
quantizers in this ensemble can achieve this MSE.

For the problem of scalar quantization with noisy partition points, we investigate how

the set of distributions
{
FṼi

}
impacts the system performance metrics in (3.9) to(3.11).

To investigate this, we derive results by extending the high resolution analysis in classical
scalar quantization theory to the setting with noisy partition points in Section 3.4.

More specifically, for the ADC with imprecise comparators model in Section 3.2, if we

design the reference voltages to be vn, then Ṽi
indep.∼ N

(
vi, σ

2
)
, 1 ≤ i ≤ n. Given σ2, we

utilize the theory in Section 3.4 to investigate how the choice of vn impacts performance
metrics, and present the detailed investigation in Section 3.5.

Remark 3.7. The problem of quantization with uniformly distributed partition points for
the uniform input distribution has been investigated in [20], under a different motivation,
and it turns out to be a useful building block in our analysis.

� 3.4 High resolution analysis for noisy partition points

In this section we extend the high resolution analysis technique to the case of scalar quan-
tization with noisy partition points. High resolution analysis analyzes the performance of
a quantizer as the number of partition points approaches infinity, and approximate this
sequence of partition points by a point density function. For the classical quantization
problem in Section 3.3.1, high resolution analysis of MSE [21–23] leads to mathemati-
cal tractable performance results and yields useful approximate results for MSE-optimal
quantizer design. We apply the high resolution analysis techniques to the problem in
Section 3.3.2. We analyze not only MSE but also maximum quantization cell size SD and
maximum quantization error SI, in Section 3.4.1, Section 3.4.2 and Section 3.4.3 respec-
tively. While the analysis for maximum quantization cell size and maximum quantization
error is straightforward in the classical case, it is non-trivial in the case of quantization
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with noisy partition points, because the variation in partition point location induces a ran-
dom ordering of the partition points, as the order statistics in (3.9) indicates. Combining
tools from order statistics and high resolution analysis, we derive analytical expressions
for MSE and the distribution of SD and SI. Then in Section 3.5, we apply these results
to gain more insights on ADC performance and obtain better Flash ADC designs.

We defer most proofs and derivations in this section to Appendix A.2.
We first introduce one of the key ideas in high resolution analysis, point density func-

tion, via which we can approximate a sequence of values as a density function.

Definition 3.1 (Point density function). A sequence of values vn is said to have point
density function λ(x) if

λ(x) = lim
δ→0

lim
n→∞

1

nδ
N (x, x+ δ; vn) , x ∈ R. (3.12)

Given a point density function λ and n, we could “sample” n partition points v′n by letting

v′i = F−1
λ (i/(n+ 1)) , 1 ≤ i ≤ n, (3.13)

where Fλ (·) is the c.d.f. corresponds to λ. This establishes an one-one correspondence
between a point density function and a sequence of partition points.

Example 3.1. For λ ∼ Unif ([−1, 1]), then the v′n corresponds to λ(·) is an n-point evenly
spaced grid in [−1, 1].

We can generalize the concept of point density function to the case of noisy partition
points, where we represent each partition point by a random variable. Let Wn be the

n random partition points, where Wi
indep.∼ fWi (·), then we say fW̄ (·) is a point density

function for Wn if

fW̄ (x) = lim
δ→0

lim
n→∞

1

nδ
EWn [N(x, x+ δ;Wn)] , x ∈ R. (3.14)

In particular, when Wi
i.i.d.∼ fW , fW̄ in (3.14) becomes fW .

While we do not have full control on the location of the partition points as they are
random variables, in some applications we may be able to influence their locations by
controlling certain parameter of the random variable. In the context of Flash ADC design
with reference voltage offsets, we have each Wi being a Gaussian random variable with
certain mean vi and variance σ2. The variance σ2 is determined by the fabrication process,
but we can design the means vn to impact the point density function fW̄ (·). Therefore, by
understanding how fW̄ (·) impacts the quantization performance, we design vn accordingly,
as we shall see in Section 3.5.

In the following few sections, we analyze the performance of quantization with noisy
partition points via high resolution analysis. In particular, we derive the functional rela-
tionship between fW̄ (·) and performance metrics (MSE, maximum quantization cell size
and maximum quantization error).
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� 3.4.1 High resolution analysis of MSE

In this section we develop an analogous result to the high-resolution approximation of
MSE for non-uniform quantization, as Bennett [21] first did for the classical quantization
problem.

High resolution approximation of MSE: given input X with p.d.f. fX and n ran-
dom partition points Wn, each with p.d.f. fWi , if the set of densities {fWi , 1 ≤ i ≤ n}
are smooth over Supp(fX) and corresponds to the point density function fW̄ (·) defined
in (3.14), then in the high resolution regime,

EX,Wn [d (X,Wn)] ' 1

2n2

∫
fX(x)f−2

W̄
(x) dx, (3.15)

provided that the integral in (3.15) is finite (in particular, Supp(fW̄ ) ⊃ Supp(fX)).

The related derivations are presented in Appendix A.2.1.

Remark 3.8. In the classical scalar quantization problem, the partition points are de-
terministic. Therefore, given fW̄ (·), if a sequence of (non-random) partition points vn

correspond to point density function fW̄ (·), i.e.,

fW̄ (x) δ ' 1

n
N(x, x+ δ; vn),

where vn can be obtained via (3.13). Bennett [21] shows for a quantizer with partition
points vn, the high-resolution approximation of MSE satisfies

MSE ' 1

12n2

∫
fX(x)f−2

W̄
(x) dx, (3.16)

which is exactly 1/6 of (3.15). The increase of MSE in (3.15) with respect to (3.16)
comes from the random sizes of quantization cells, because the increase in square error
due to larger cells outweighs the decrease in square error due to smaller cells.

Remark 3.9. Since high resolution approximation requires sufficiently many points in
each small interval within the support of fX , the smaller the minimum of fW̄ (·) over fX ,
the larger n we need to achieve the high resolution approximation. The Monte-Carlo sim-

ulations in Fig. 3-5 demonstrate this effect for different fX with fWi

i.i.d.∼ fW ∼ N
(
0, σ2

)
,

where a smaller σ leads to smaller minimum of fW̄ (·) over fX , and hence a larger n is
needed for the high resolution approximation to hold.

� 3.4.2 High resolution analysis of maximum quantization cell size

With noisy partition points, the maximum quantization cell size SD is a random quantity
and in this section we derive its c.d.f. in the high resolution regime. We restrict our
attention to an input distribution with finite support [a, b] as otherwise SD is infinite. As
discussed in Section 3.3.1, this performance measure is most meaningful when the set of
output codes C is unconstrained.
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Figure 3-5: The ratio of EX,Wn [d (X,Wn)] obtained from Monte-Carlo simulations and
numerical calculations of the integral in (3.15) for a variety of fX(·) and fW (·).

High resolution analysis of the maximum quantization cell size: given input
X with p.d.f. fX , where Supp(fX) = [a, b], and n independent random partition
points Wn, each with p.d.f. fWi , if the set of densities {fWi , 1 ≤ i ≤ n} are smooth
over [a, b] and corresponds to the point density function fW̄ (·) defined in (3.14), then
in the high resolution regime,

P [SD (Wn) ≤ s] ' exp

{
−n
∫ b

a
fW̄ (w) e−nsfW̄ (w) dw

}
, (3.17)

provided fW̄ (x) > 0 for any x ∈ [a, b].

Remark 3.10. The requirement fW (x) > 0 for any x ∈ [a, b] is crucial in the asymptotic
approximation (3.17), as the approximation use the fact that for any interval with size s
within [a, b], there are sufficiently many number of partition points in the interval.

In particular, the right hand side in (3.17) is a poor approximation for P [SD (Wn) ≤ s]
when the assumption fW > 0 is violated. For example, when fW (x) = 0 for any x ∈ [a, b],

exp

{
−n
∫ b

a
fW̄ (w) e−nsfW̄ (w) dw

}
= 1.

As a result, we cannot obtain a design that achieves small SD (Wn) by finding the fW̄ (·)
that minimizes the right hand side of (3.17).

With (3.17), we can derive the range of SD in the high resolution regime.
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Range of maximum quantization cell size: in the high resolution regime,

P

[
1

f
[a,b]
max

log n

n
≤ SD (Wn) ≤ 1

f
[a,b]
min

log n

n

]
→ 1 (3.18)

as n→∞, where

f [a,b]
max , max

x∈[a,b]
fW̄ (x) , (3.19)

f
[a,b]
min , min

x∈[a,b]
fW̄ (x) . (3.20)

The related derivations are presented in Appendix A.2.2.

Remark 3.11. When n partition points form an evenly spaced grid in [a, b], the maximum
quantization cell size is (b− a)/(n+ 1). Therefore, (3.18) indicates in the high resolution
regime, the randomness in partition locations leads to an order of log n increase in the
maximum quantization cell size.

� 3.4.3 High resolution analysis of maximum quantization error

In this section we derive the c.d.f. of SI in the high resolution regime. Again, we restrict our
attention to an input distribution with finite support [a, b] as otherwise SI is infinite. As
discussed in Section 3.3.1, when the set of output codes C is unconstrained, the maximum
quantization error is exactly half of the maximum quantization cell size. Hence in this
section we focus on the case that C is constrained, where this performance measure is most
meaningful. In particular, we choose C = Cm that corresponds to the reproduction values
of a uniform ADC, i.e., the midpoints of an evenly spaced grid in [a, b],

ci = a+ (b− a) · (i− 0.5)/m, 1 ≤ i ≤ m. (3.21)

These results regarding Cm are applied in Section 3.5, and it is not hard to see that our
analysis can be extended to other choices of C as well.

High resolution analysis of maximum quantization error: given input X with
p.d.f. fX , where Supp(fX) = [a, b], and n independent random partition points Wn,
each with p.d.f. fWi , if the densities fWi , 1 ≤ i ≤ n are smooth over [a, b] and corre-
spond to the point density function fW̄ (·) defined in (3.14), then in the high resolution
regime,

P
[
SI (Wn, Cm) ≤ b− a

2m
+ s

]
' 1−

m∑

i=1

e−npi(s), (3.22)

where pi(s) , FW̄ (ci + s)−FW̄ (ci − s) ≈ 2fW̄ (ci) s and provided that fW̃ (x) > 0 for
any x ∈ [a, b].
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comparisonX

fabricationvn Ṽ n

Y n reconstruction g(·) X̂

calibration
Ṽ n

Figure 3-6: Block diagram of a Flash ADC with imprecise comparators. X is the input
signal, vn are the designed reference voltages and the Ṽ n are the fabricated reference
voltages, which is a noisy version of vn. A comparison of X and Ṽ n leads to the comparator
outputs Y n. The reconstructor g(·, ·) takes both Y n and Ṽ n to produce X̂ ∈ C.

Based on (3.22) we derive a result on the range of the maximum quantization error.

The range of maximum quantization error: in the high resolution regime, for
Cm with values specified in (3.21), and any t > 0,

P

[
1

2f
[a,b]
max

logm

n
≤ SI (Wn, Cm)− b− a

2m
≤ 1

2f
[a,b]
min

logm+ t

n

]
≥ 1− e−t (3.23)

as n→∞, where f
[a,b]
max and f

[a,b]
min are defined in (3.19) and(3.20).

The related derivations are presented in Appendix A.2.3.

Remark 3.12. When m − 1 partition points form an evenly spaced grid in [a, b], the
maximum quantization error is (b − a)/(2m). Therefore, (3.23) indicates in the high
resolution regime, the randomness in partition locations leads to an increase on the order
of logm/n in maximum quantization error.

� 3.5 Applications to Flash ADC design

In this section we apply results developed in Section 3.4 to the problem of Flash ADC
design with imprecise comparators described in Section 3.2.2. This problem can be de-
scribed by the framework of scalar quantization with noisy partition points, as the diagram
in Fig. 3-6 indicates. More specifically, for a given ADC, we design the comparators to
have reference voltages vn, and the resulting fabricated reference voltages Ṽ n are inde-

pendent random variables that satisfy Ṽi
i.i.d.∼ N

(
vi, σ

2
)
. The output Yi of comparator i

satisfies

Yi = 1

{
X > Ṽi

}
,

where X is the input signal. The fabricated reference voltages are provided to the decoder
via the calibration process, and the reconstructor g(·, ·) takes both Y n and Ṽ n to produce
X̂ ∈ C, an estimate of X.

For this formulation, we ask the following question:
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How should we design vn such that a Flash ADC with imprecise comparators
still achieves good performance in terms of MSE, maximum quantization cell
size, and maximum quantization error?

To answer this question, we use the idea of high resolution analysis again, and represent
the vn by its point density function τ(x), and let φ(·) be the probability density function
for Gaussian distribution N

(
0, σ2

)
, where σ > 0. We first analyze the expected number

of fabricated reference voltages in each small interval [x, x+ dx] and obtain the following
result:

Lemma 3.1.
1

n
E
[
N
(
x, x+ dx; Ṽ n

)]
' (τ ∗ φ)(x)dx.

We defer all proofs and derivations in this section to Appendix A.3.
Then by (3.14), the resulting point density function of the random partition points

λ(·) (which corresponds to fW̄ (·) in (3.14)) is the convolution of two densities τ and φ

λ(x) = (τ ∗ φ)(x), (3.24)

where ∗ indicates convolution, i.e.,

(f ∗ g) ,
∫
f(t) · g(x− t) dt.

This leads to the relationship summarized in Fig. 3-7, where we can design vn, and
the system performance is determined by Ṽ n. Noting that results in Section 3.4 imply
how the ADC performance metrics relate to λ, and (3.24) shows how λ relates to τ , we
derive how τ impacts ADC performance in terms of MSE in Section 3.5.1, which provides
us with insights on designing vn in Section 3.5.2. In addition, we analyze the technology
scaling in Section 3.5.3.

τ(·) vn

λ(·) Ṽ n

high res. approx.

“sample”

high res. approx.

sample

Ṽi = vi + Zi

Zi
i.i.d.∼ φ(·) ∼ N

(
0, σ2

)λ(x) = (τ ∗ φ)(x)

Figure 3-7: Relationship between the design and fabricated reference voltages and their
point density functions.
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� 3.5.1 MSE-optimal partition point density analysis

In this section we investigate the point density function τ of designed reference voltages
that minimizes MSE for a general input distribution, and then specialize our results to
both Gaussian and uniform input distributions to obtain the corresponding MSE-optimal
reference voltage designs.

Following (3.15) and (3.24), the MSE of a Flash ADC with imprecise comparators
satisfies

EX,Ṽ n
[
d
(
X, Ṽ n

)]
' 1

2n2

∫
fX(x)λ−2(x) dx. (3.25)

(3.25) indicates the integral

R(τ) =

∫
fX(x)(τ ∗ φ)−2(x) dx (3.26)

is the key quantity in MSE calculation, and in this section we characterize the τ∗ that
minimizes R(τ) in a variety of scenarios of interest.

Remark 3.13. It is not hard to see that for a fixed n, taking σ → 0 leads to high resolution
approximation in (3.16) rather than (3.15), as σ = 0 corresponds to the classical ADC
design with no reference voltage offsets. When σ > 0, (3.15) holds as n→∞. However,
if an ADC design corresponds to an n that is not too large, then using (3.16) to calculate
MSE may be more appropriate, because the convergence of MSE to (3.15) depends on n,
as indicated in Fig. 3-5. However, as both MSE expressions share the integral (3.26), the
search of τ that minimizes (3.26) is beneficial regardless of the regime we operate in.

Theorem 3.2. τ∗ minimizes R(τ) if and only if

sup
x∈A

[
fX

(τ∗ ∗ φ)3
∗ φ
]

(x) ≤
〈
fX ,

1

(τ∗ ∗ φ)2

〉
. (3.27)

In particular, if there exists a τ∗ such that

τ∗ ∗ φ ∝ f1/3
X , (3.28)

then τ∗ minimizes R(τ) and

R(τ∗) =

(∫
f

1/3
X (x)d x

)3

. (3.29)

Note (3.28) and(3.29) corresponds to the classical Panter-Dite formula [22].
Based on Theorem 3.2, we can derive the optimal τ when the input distribution is

Gaussian or uniformly distributed.

Theorem 3.3 (Gaussian input distribution). When X ∼ N
(
0, σ2

X

)
,

τ∗ ∼
{

N
(
0, 3σ2

X − σ2
)

when 3σ2
X > σ2

δ(x) when 3σ2
X ≤ σ2

,
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and

R(τ∗) =

{
6
√

3πσ2
X when 3σ2

X > σ2

2πσ3/
√
σ2 − 2σ2

X when 3σ2
X ≤ σ2

.

Theorem 3.4 (Uniform input distribution). When X ∼ Unif ([−1, 1]) and σ ≥ σ0,
where σ0 is a constant and σ0 ≈ 0.7228, τ∗(x) = δ(x) and

R(τ∗) = 2πσ2

∫ 1

0
exp

(
− x2

2σ2

)
dx.

Remark 3.14. While in current circuit design the value of σ is often much less than the
ADC input range (with the exception of [9]), our results may turn out to be important with
aggressive technology scaling that eventually lead to σ values that are on the same order
of the ADC input range.

Remark 3.15. For both Gaussian and uniform input distributions, when σ large enough,
τ∗(x) = δ(x). In this case, simply aiming to place all partition points at x = 0 and letting
the noisy placement process spread them out naturally is optimal in terms of MSE.

When the input is uniform and σ < σ0, we do not have a closed form expression for τ∗

and instead we search for it via numerical optimization. Noting that the classical Lloyd-
Max iterative algorithm no longer applies as the placement of partition points is subject
to random variations, we propose an alternative algorithm guarantees convergence to local
optimum. In particular, we approximate τ∗ by a discrete distribution τ̂ , where

τ̂(x; p,a) =
k∑

i=0

pi(δ (x− ai) + δ (x+ ai)),

where ai ≥ 0 and the symmetry of τ̂∗ follows from the symmetry of fX . Without loss of
generality, we assume a0 = 0. Then we find the best p and a that corresponds to τ̂∗ that
minimizes R(τ) via Algorithm 1.

Remark 3.16. Since the optimization problem is non-convex, Algorithm 1 only guaran-
tees that it converges to a local optimum rather than a global optimum. In practice we run
the algorithm with multiple randomly perturbed initial solutions to increase the probability
of reaching global optimum.

Some examples of τ̂∗ for different values of σ are shown in Fig. 3-8 on page 43.
In our numerical optimization procedure, we observe the phenomenon that the prob-

ability mass tends to concentrate to a few locations even when the initial solution has
non-zero probability mass at more locations, leading to the following conjecture.

Conjecture 3.5. For any σ > 0, the optimal density τ∗ is singular, i.e., has the form

τ̂(x; p,a) =

k∑

i=0

pi(δ (x− ai) + δ (x+ ai))

for some p and a.
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Algorithm 1 Iterative optimization for τ̂ .

p
(1)
i = 1/(2k + 1) for 0 ≤ i ≤ k
a

(1)
i = i/(k − 1) for 1 ≤ i ≤ k
E0 = 0
E1 = R

(
τ̂
(
·; p(1),a(1)

))

t = 1
while |Et − Et−1| ≥ ε do

p(t+1) = arg minp τ̂
(
x; p,a(t)

)

a(t+1) = arg mina τ̂
(
x; p(t+1),a

)

Et+1 = R
(
τ̂
(
·; p(t+1),a(t+1)

))

t = t+ 1
end while

We note that a similar phenomenon has been observed in [24] and the proof technique
therein could be useful.

� 3.5.2 Flash ADC design with imprecise comparators

In this section we investigate the problem of designing a b-bit Flash ADC with imprecise
comparators. Without loss of generality, we assume the input range of the ADC is [−1, 1],
and hence the LSB of a b-bit ADC is 2/2b.

In this section we consider the Flash ADC to conform to the standard output interface,
i.e., a b-bit ADC has m = 2b output codes Cm = {ci, 1 ≤ i ≤ m}, where

ci = −1 + (i− 0.5) · 2/m.

As discussed in Section 3.3, we use maximum quantization error as the main performance
metric.

As mentioned in Remark 3.2, in practice the requirement for maximum quantization
error is often in the range of 1LSB to 1.25LSB. As an example, in the following sections we
analyze designs that achieve maximum quantization errors of less than 1LSB. Due to the
fabrication variation, it is unlikely that n = m − 1 comparators, which corresponds to n
reference voltages, can achieve the required maximum quantization error. Therefore, more
comparators are needed and we assume n = r(m − 1), where we say r is the redundancy
factor.

Below we first show that while it is possible to find SI-optimal designs by minimizing
(3.22), empirically these designs achieve very similar performance with the MSE-optimal

designs obtained in Section 3.5.1, in terms of the c.d.f. of SI

(
Ṽ n
)

. Then we show that

using MSE-optimal designs indeed leads to better SI performance comparing to using
traditional designs, where vn form an evenly spaced grid. Furthermore, we show that
given the same number of comparators n, using more than 2b reproduction points (e.g.,
m = 2b+1) improves SI performance significantly as we can make better use of all the
fabricated comparators. Finally, we compare our design to stochastic ADC [9], another
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Figure 3-8: τ̂∗(x) and τ̂∗ ∗ φ(x) obtained from Algorithm 1 for uniform input distribution
over [−1, 1], with k = 7 for all σ values. The stems indicate τ̂(x) and the solid curves
indicate (τ̂ ∗ φ)(x).

design that aims to take process variations into account, and demonstrate this intuitive
design, unfortunately, does not achieve good performance.

MSE-optimal and SI-optimal design achieves similar maximum quantization
error

We compare the SI performance for 6-bit ADC designs obtained from optimizing (3.22)
and (3.15) respectively, at redundancy factor r = 6 and various values of σ. Fig. 3-9 show
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Figure 3-9: Comparisons of c.d.f.s correspond to MSE-optimal and SI-optimal designs for
b = 6, r = 6 and σ = 0.2, 0.5, 0.8. The solid lines are computed based on (3.22) and the
dashed lines are obtained from Monte-Carlo simulations. The solid lines are only plotted
between asymptotic lower and upper bounds obtained from (3.23) with t = 4.

that for all cases evaluated, the c.d.f.s of the two designs are essentially the same, and
hence we choose the MSE-optimal designs due to its simplicity as the locations of vn are
more concentrated.
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MSE-optimal design is better than uniform design

We compare the SI performance of the MSE-optimal design and the uniform design. In
the uniform design, the n = r(2b−1) designed reference voltages vn form a grid as follows:

vir+j = ui, 1 ≤ j ≤ r, 0 ≤ i ≤ 2b − 2. (3.30)

This design corresponds to the traditional uniform ADC design when r = 1, and most
existing research works on Flash ADC with redundancy apply this design with r = 2 or r =
4 [7,8]. Fig. 3-10 shows that for different values of σ and appropriate redundancy factors
r, for a range of x within [0.75LSB, 1.25LSB], MSE-optimal designs increases P [SI ≤ x]
by 5%—10%! And this is achieved by simply modifying the design of reference voltages.
Alternatively, defining the yield as the maximum quantization error being less than 1LSB,
Fig. 3-11 shows how yield changes as σ increases, given a certain redundancy factor r.

Using more output codes reduces maximum quantization error

We compare the SI performance for ADCs with the same number of comparators but
different number of output codes m. In particular, we consider the case of n ≈ 29 com-
parators and m = 26, 27 and 28 respectively, which corresponds to a 6-bit ADC with 8
times redundancy, a 7-bit ADC with 4 times redundancy, and an 8-bit ADC with 2 times
redundancy. Noting that 1LSB in 6-bit ADC is 2LSB in 7-bit ADC and 4LSB in 8-bit
ADC, and letting the 1LSB for 6-bit ADC be ∆, Fig. 3-13 indicate that 6-bit ADC with
r = 8 (n = r(2b − 1) = 504 comparators) achieves P [SI ≤ ∆] ≈ 0.88, a 7-bit ADC with
r = 4 (n = 508) achieves P [SI ≤ ∆] ≈ 0.97, a 8-bit ADC with r = 2 (n = 510) achieves
P [SI ≤ ∆] ≈ 1.0. A similar phenomenon can be observed for σ = 0.8 in Fig. 3-13 and the
increase is even more significant. Therefore, an 1-bit increase in output code could lead
to significant improvement in SI performance, as with more reproduction values, we can
convey more information about the input, which is available from the fabricated compara-
tors. This phenomenon is demonstrated in Fig. 3-12, where we show that a 2-bit ADC
with reproduction values C8 can achieve smaller quantization error than the same ADC
with reproduction values C4.

Remark 3.17. In practice, designers often use a higher resolution ADC (say, 7-bit ADC)
when a quantization accuracy of a 6-bit ADC is required, which naturally leads to perfor-
mance improvement in INL. However, as the number of comparators in traditional ADCs
satisfy n = 2b − 1, a 7-bit ADC has about two times the number of comparators, while in
our discussion above, all designs have the same number of comparators and hence using
more output bits does not lead to increase in the number of comparators.

Comparison with stochastic ADC

In circuit system research, [9] presents a design that explores the idea of high resolution
quantization. Assuming uniform input over [−σ, σ], their design corresponds to n in the
range of 1000 to 2000, and τ(x) = δ (x− 1.078σ) /2 + δ (x+ 1.078σ) /2, with the rationale
of making the resulting density λ = τ ∗φ as uniform as possible in the input range [−σ, σ].
However, as we showed in Theorem 3.4, the MSE-optimal solution is τ∗(x) = δ(x). As
Fig. 3-14 shows, assuming σ = 1, while λstochastic is approximately flat in the input range
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Figure 3-10: Comparisons of c.d.f.s correspond to MSE-optimal and uniform designs for 6-
bit Flash ADCs. The “analytical” lines are computed based on (3.22) and the “simulated”
lines are obtained from Monte-Carlo simulation.

[−1, 1], many partition points are wasted as they are out of the input range. Calculation
shows MSEstochastic/MSE∗ ≈ 2.15, which corresponds to slightly more than 1 effective
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Figure 3-11: The probability of maximum quantization error less than 1LSB (yield) for
a 6-bit ADC with different designs and σ values. The MSE-optimal designs are the ones
shown in Fig. 3-8, and the “uniform” designs are specified in (3.30).

number of bit (ENOB) difference. This is significant for the design in [9] with ENOB in
the range of 5 to 6 bits.

Remark 3.18. The above analysis shows that for the case of full calibration, the stochastic
ADC design is suboptimal. However, in [9] no calibration is used because the fabricated
reference voltages are essentially estimated. We expect the stochastic ADC to be suboptimal
comparing to the MSE-optimal design in the no-calibration case as well because its design
leads to too many wasted fabricated reference voltages.

� 3.5.3 Technology scaling

In this section we discuss how MSE, maximum quantization cell size and maximum quanti-
zation error scales as we fabricate more and more comparators in a fixed area. Section 3.3.1
shows that in classical quantization, when m = n + 1, for an ideal uniform ADC, MSE
scales with the number of quantization points n as 1/n2, and SI and SD scales with the
number of quantization points as 1/n. Therefore, more ideal comparators improves quan-
tization accuracy. However, with process variations, the smaller the comparator, the larger
the reference voltage offsets. Therefore, it is unclear whether more but noisier comparators
improve quantization accuracy, and in this section we show that with calibration, more
but noisier comparators again improves quantization accuracy, although at a slower rate.

Remark 3.19. Given a b-bit ADC, increasing n means we increase the redundancy factor
r, which is defined in Section 3.5.2.

As large n leads to large σ, we focus our attention to uniform input distribution
with σ > σ0 (cf. Theorem 3.4 for the definition of σ0), where the MSE-optimal design
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XX̂

(a) A 2-bit ADC with m = 4.

−1 1−0.5 0 0.5

XX̂

(b) A 2-bit ADC with m = 8.

Figure 3-12: The quantization regions and reconstruction points of two 2-bit ADCs with
different reproduction values. Both ADCs have exactly the same set of reference voltages,
which are indicated by the solid vertical lines, and the reproduction values are indicated
by the solid dots. The dashed vertical lines indicate an evenly spaced grid of [-1, 1], and
the small circles indicate the midpoint of each quantization cell formed by the reference
voltages.

corresponds to τ(x) = δ(x). As mentioned in Remark 3.15, τ(x) = δ(x) corresponds
to fabricating identical comparators with the same reference voltage, possibly leading to
simpler circuit implementations.

When τ(x) = δ(x), λ(x) is simply the Gaussian p.d.f., i.e.,

λ(x) =
1√
2πσ

e−
x2

2σ2 .

Then over range [-1, 1],

f [−1,1]
max = λ(0) =

1√
2πσ

,

f
[−1,1]
min = λ(±1) =

1√
2πσ

e−
1

2σ2 ,

where e−
1

2σ2 approaches 1 as σ increases. Therefore, when σ large enough,

MSE ≈ 2πσ2/n2, (3.31)

SD ≈
√

2πσ
log n

n
, (3.32)

SI ≈
√
π/2σ

logm

n
. (3.33)

48



3.5. APPLICATIONS TO FLASH ADC DESIGN

0.75LSB 1LSB 1.25LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.2, b = 6, r = 8

1LSB 2LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.2, b = 7, r = 4

2LSB 4LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.2, b = 8, r = 2

0.75LSB 1LSB 1.25LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.5, b = 6, r = 8

1LSB 2LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.5, b = 7, r = 4

2LSB 4LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.5, b = 8, r = 2

0.75LSB 1LSB 1.25LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.8, b = 6, r = 8

1LSB 2LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.8, b = 7, r = 4

2LSB 4LSB
0

0.5

1

x

P [SI ≤ x]
σ = 0.8, b = 8, r = 2

MSE-optimal design (analytical) MSE-optimal design (sim.)

Figure 3-13: c.d.f.s of MSE-optimal designs for 6-bit Flash ADC with (approximately)
the same number of comparators but different number of output codes at different values
of σ. The dashed lines are c.d.f. computed based on (3.22) and the solid lines are the
cumulative histograms of the SI obtained from Monte-Carlo simulation.

Note that σ increases as the component size shrinks, which can be specified via the rela-
tionship [18,19] σ2 ∝ 1/(Component area). Ignoring the wiring overhead, then the number
of components n is inversely proportional to the component area, i.e.,

n ∝ 1/(Component area) ∝ σ2. (3.34)
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Figure 3-14: Comparison of the optimal λ∗ with the stochastic ADC density λstochastic. The
two dotted lines show the noisy partition point densities corresponding to δ (x− 1.078) /2
and δ (x+ 1.078) /2, which are {φ(x± 1.078)/2} and sum to λstochastic.

MSE SD SI

Classical Θ
(
1/n2

)
Θ (1/n) Θ (1/n)

Process variation Θ (1/n) Θ (log n/
√
n) Θ (logm/

√
n)

Table 3.1: The scaling of quantization accuracy for ADC in classical and process variation
settings.

Therefore, setting σ = Θ (
√
n), (3.31) to(3.33) indicate

MSE = Θ (1/n) , (3.35)

SD = Θ

(
log n√
n

)
, (3.36)

SI = Θ

(
logm√
n

)
. (3.37)

We summarize the scaling of MSE, SD and SI in both the classical and process variation
settings in Table 3.1.

Remark 3.20. Taking wiring and other components in the circuit implementation into
account, our results indicate that as long as σ increases at a speed slower than n/ log n,
building more comparators reduces MSE, INL and DNL. Therefore, given a total silicon
area, we only need to allocate more than Θ

(
log2 n/n

)
fraction of the area to comparators,

making each comparator having an area of more than Θ
(
log2 n/n2

)
and hence correspond

to σ less than Θ (logn/n). The rest of silicon area can be used for other circuit components
such as wiring and calibration logic.

Remark 3.21. It is conceivable that as we continue scaling down the size of comparators,
the process variation may increase faster than the relationship indicated in (3.34), and
may no longer be Gaussian distributed. Then in this new regime (3.35) to (3.37) would
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not hold, and we need to analyze the problem by taking the new statistical property of the
process variation into account.

� 3.6 Concluding remarks

In this chapter we investigate the problem of building a reliable Flash ADC from imprecise
comparators. We formulate this problem as scalar quantization with noisy partition points,
and use high resolution analysis and order statistics to analyze fundamental limits in terms
of MSE, maximum quantization cell size and maximum quantization error. Our designs,
obtained based on minimizing the MSE, is effective in reducing maximum quantization
error, as demonstrated by both analytical and simulation results. In addition, our scaling
analysis shows that building more but noisier comparators is beneficial for quantization
accuracy.

Our research has shown the promise of building Flash ADC from imprecise compara-
tors, and to take it for practical implementation, we need to address the following issues:

• calibration: in some current implementations [8] is implemented on-chip, which oc-
cupies large amount of silicon area, and does not scale as we increase the number of
comparators. Therefore, it is desirable to move calibration off-chip, as it does not
need to be conducted often;

• dynamic performance: as mentioned in Section 3.1, we only analyze the static per-
formance of ADCs while in practice, the dynamic performance such as bandwidth
and timing errors are also important;

• power: with more comparators, the power consumption of an ADC is likely to go up,
and it is important to understand how power consumption scales with the number
of comparators.

The calibration issue motivates the problem of calibration-free or partial-calibration
ADC design. In this setting, we can assume a subset of the comparators are calibrated,
with the two extreme cases being no calibration and full calibration, and analyze how the
ADC performance degrades as we reduce the amount of calibration.

Another research direction that could lead to better ADC designs is reconfiguration,
which is used in [8] to disable comparators after fabrication. While this potentially reduces
the quantization accuracy, it is beneficial for power-saving due to smaller number of active
comparators. A good understanding on this trade-off between quantization accuracy and
power consumption could lead to better low-power ADC designs.

Finally, while in this work we focus our attention on Flash ADC, our results can be view
as a building block to other types of ADCs that have the Flash ADC as sub-components,
such as the pipelined ADC. Extending the analysis to other relevant ADC architectures
may lead to new trade-offs and help to improve more ADC designs.
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Chapter 4

Designing digital circuit with faulty components

� 4.1 Introduction

The challenge of component variations mentioned in Section 3.1 appears in not only in
analog circuits but also digital circuits. Due to the nature of digital circuits, component
variations often exhibit as component failures or component errors. Again, redundancy
and reconfiguration provides a way to combat component failures or errors, and in this
chapter we offer a preliminary investigation on various aspects of this approach, with our
focus on combinatorial circuits with possible component failures.

The idea of introducing on-chip redundancy, or redundancy in combinatorial circuit
design was first investigated in [25] and later by [26–28], where the focus was to achieve reli-
able computation from unreliable components, such as noisy gates, and errors occurrences
could be dynamic1 for each component. These analysis shows a relative large amount of
redundancy is needed to achieve reliable computation.

However, in practice, fabrication defects are often static, i.e., fixed after fabrication,
and circuit designers use the approach of redundancy and reconfiguration after fabrication
for yield improvement [29]. In this approach, redundancy is usually introduced at the
design stage, and implemented by fabrication. Reconfiguration can happen right after
fabrication, where circuits are altered via Engineering Change Order (ECO), or it can
happen when the device is boot-up and after some built-in self-test (BIST) is conducted.
The BIST approach is popular for memory design due to the cost of in-factory test and
reconfiguration [30].

While there exists design and analysis for redundancy and reconfiguration in special
cases, especially random-access memory (RAM) [31–34], existing research usually relies
on specific assumptions about the underlying circuit implementation. In this chapter we
adopt the static fabrication error model, and take an abstract approach to analyze the
problem of circuit design with redundancy and reconfiguration. For a given reliability
requirement, we analyze the amount of additional resource needed in terms of both redun-
dancy and reconfigurability, and the fundamental trade-off between the two. These results
not only provide performance limits but also propose designs that achieve reliability with
relatively small amount of additional resource usage.

The rest of the chapter is organized as follows. In Section 4.2, we propose a mathemat-
ical model for the reconfigurable redundant circuit and identify design settings of interest.
Then we present analysis regarding the deterministic and probabilistic error correction
settings in Section 4.3 and Section 4.4 respectively, and finally conclude by discussing the
various implications of our analysis in Section 4.5.

1Dynamic means for each use of an element, the error occurs independently with certain probability.
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� 4.2 Problem formulation

In this section we first propose a redundant circuit model in Section 4.2.1, which is mo-
tivated by existing circuit designs with redundancy and reconfiguration. Then in Sec-
tion 4.2.2 we introduce the measures of resource usage, in terms of redundancy and recon-
figurability. With these resource usage measures, we categorize design settings into two
classes in Section 4.2.3, which lead to different performance trade-offs in terms of resource
usage.

� 4.2.1 The redundant circuit model

A circuit consists of a set of circuit elements and wires connecting these elements to achieve
some functionality, and we call these elements functional elements. Depending on the ap-
plication, the set of functional elements could be transistors, gates (AND gate, OR gate,
. . . ), or circuit components (CPU, memory, . . . ). A circuit with redundancy and reconfig-
uration contains redundant elements in addition to functional elements, where redundant
elements are introduced to replace failed functional elements. The replacement process
can be achieved by enabling reconfigurable wires, which re-route inputs and outputs of
the element being replaced to the redundant element. In practical implementations, due
to routing constraints, a redundant element may not replace any functional element, but
rather functional elements in a certain subset (e.g., the ones that are not far from the
redundant element). Based on these observations, we propose the following redundant
circuit model that allows us to capture the aspects of redundancy, reconfiguration and
routing constraints. We consider all wiring to be reliable and restrict our attention to
the case of circuit element failures, where each functional or redundant element fails with
some probability.

Given a finite non-empty set of circuit elements X , we say a circuit has k functional
elements s1, s2, . . . , sk, where sk is chosen from a set of possible configurations S ⊂ X k
(e.g., the largest set of configurations is simply S = X k). In a redundant circuit, we add m
redundant elements r1, r2, . . . , rm and connect these redundant elements to the k elements
s1, s2, . . . , sk via a configurable interconnect E . By default all wires in the interconnect are
disabled. After fabrication, we test all elements in the circuit to obtain the set of failed
functional and redundant elements Vf and Uf respectively, and enable a subset of wires in
the interconnect during reconfiguration. We say that the redundant element ri corrects
the functional element sj if there exists an enabled wire in E between ri and sj .

Based on the above description, we can model a redundant circuit and its error cor-
rection via graph-theoretic concepts.

Definition 4.1 (Graph-theoretic model for the redundant circuit). A redundant
circuit model C , C(sk, rm,G) consists of functional elements sk, redundant elements
rm and a bipartite graph G = (U ,V, E), where U = {r1, r2, . . . , rm}, V = {s1, s2, . . . , sk}
and E ⊆ {(r, s), r ∈ U , s ∈ V} are the edges representing the configurable interconnect.

Given the set of failed functional and redundant elements Vf and Uf , a redundant circuit
correct all its errors if and only if there exists a Vf-saturated matching in the subgraph
Gc = (U \ Uf ,Vf , Ec), where Ec are all edges in G that have one end point in U \Uf and the
other in Vf .
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(a) A redundant circuit that has two types
of circuit elements (shaded and non-shaded),
with six functional elements and four redun-
dant elements. The dashed lines represent the
reconfigurable interconnect.
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(b) Circuit after test and reconfiguration,
where the failed functional elements are Vf =
{s1, s2, s5, s6}, and are replaced by r1, r2, r4
and r3 accordingly, as indicated by the match-
ing consists of solid lines.

Figure 4-1: Example of an redundant circuit model and its reconfiguration process.

Given this graph-theoretic model, the reconfiguration process can be seen as finding a
Vf -saturated matching in Gc and then enabled the edges in the matching.

Example of the redundant circuit model and its reconfiguration process are shown in
Fig. 4-1a and Fig. 4-1b. In Fig. 4-1a, there is an edge between the shaded redundant
element r3 and non-shaded functional element s5 as we may not know s6 when designing
the graph G or r4. In Fig. 4-1b,

Remark 4.1. We do not need to model wires connecting functional elements because we
assume they are reliable and they do not change in the reconfiguration process.

� 4.2.2 Resource usage in the redundant circuit

In our redundant circuit model we introduce redundancy and reconfigurability to achieve
reliability. However, both redundancy and reconfigurability require additional resource
usage, in terms of the number of redundant elements and wires in the reconfigurable inter-
connect. These translate to additional silicon area usage2. When designing a redundant
circuit, we would like to minimize the overhead due to redundancy and reconfiguration,
and we first introduce the notions of circuit redundancy and wiring complexity to measure
the overhead due to redundancy and reconfigurability respectively.

Definition 4.2 (Circuit redundancy). For a given redundant circuit C = (sk, rm,G),
its circuit redundancy is the ratio of the number of redundant elements to the number of
functional elements, i.e.,

ρ(C) , m

k
.

2They may lead to additional power consumption as well if the reconfigurable interconnect consumes
more power than regular wires.
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Definition 4.3 (Wiring complexity). For a given redundant circuit C = (sk, rm,G),
its wiring complexity is the number of wires between the redundant and functional elements
E(C) normalized by the number of functional elements, i.e.,

E(C) , |E|/k. (4.1)

As we shall see, given a certain reliability requirement, there may be a trade-off between
these two types of resource usages, i.e., between circuit redundancy and wiring complexity,
and we define the achievable region of the wiring complexity and circuit redundancy to
capture this trade-off.

Definition 4.4 (Achievable region of (E, ρ)). A pair (E, ρ) is achievable if there ex-
ists a sequence of circuits {Ck, k ∈ Z+} such that

{
E = limk→∞E(Ck)
ρ = limk→∞ ρ(Ck)

.

� 4.2.3 The redundant circuit design settings

As mentioned, we are interested in the trade-off between circuit redundancy and wiring
complexity, and this trade-off behaves differently, depending on the different amount of
information available at the design stage. In this section we identity the following two
different design settings that correspond to two different design scenarios.

General-purpose setting: design G and rm based on S. We design G and rm with
only knowledge about S, i.e., we do not know the exact sk to fabricate.

Application-specific setting: design G based on S and rm based on sk. We design
G with only knowledge about S, but design rm after knowing the exact sk to fabri-
cate.

Depending whether |S| = 1, these two design settings correspond to different level of
customization in redundant circuit design, as shown in Table 4.1.

In the rest of this chapter, we evaluate the error correction capability of a redundant
circuit in two error correction settings, deterministic and probabilistic, in Section 4.3 and
Section 4.4 respectively. The main objective of our investigation is to characterize the max-
imal achievable region for redundant circuits under both deterministic and probabilistic
error correction settings and both general-purpose and application-specific settings.

Setting |S| = 1 |S| > 1

General-purpose given sk, design both
interconnect and
redundancy

design both redundancy and inter-
connect for all possible sk ∈ S

Application-specific design interconnect for all possible
sk ∈ S, and then given sk, design
redundancy

Table 4.1: The design settings correspond to factory designs for different parts of the
redundancy circuit.
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Name Domain Meaning

k Z+ The number of functional elements.
m Z+ The number of redundant elements.
t Z+ The number of element failures to correct.
d Z+ The maximum number of functional elements

that a redundant element can connect to.

Table 4.2: System parameters for reliable circuit design in the deterministic error correc-
tion setting.

� 4.3 Deterministic error correction setting

In this section we investigate the design of redundant circuit in the deterministic error
correction setting. By deterministic error correction we mean the case of guaranteed
correction of a certain number of functional element failures. More specifically, we say
a redundant circuit C is t-correcting for S if it corrects any t circuit element failures for
any sk ∈ S. Furthermore, we simply say a redundant circuit is t-correcting when it is
t-correcting for S = X k.

As mentioned in Section 4.2, we are interested in the trade-off between wiring com-
plexity and circuit redundancy, and we define the notion of capacity region to capture the
optimal trade-off of these two quantities.

Definition 4.5 (Capacity region in deterministic error correction setting). Given
S and a design setting (general-purpose or application-specific) and a set R of (E, ρ)
pairs, if (E, ρ) is achievable for some t-correcting redundant circuit for S if and only if
(E, ρ) ∈ R, then we say the t-correcting redundant circuit for S has capacity region R.

Noting that in practice a redundant element may not be able to connect to too many
functional element, we impose a constraint on the graph G so that each node r ∈ U has
degree at most d, with the unconstrained case simply being the special case d = k. With
this observation, we summarize the system parameters in Table 4.2.

Given S, k, t and d, we denote the capacity region in the general-purpose setting and
the application-specific setting as RGP (S, k, t, d) and RAS (S, k, t, d) respectively.

We first state the following simple fact, without proof, regarding the achievable regions
for both the general-purpose setting and the application-specific setting.

Proposition 4.1. Given S and system parameters in Table 4.2, if (E, ρ) ∈ RGP (S, k, t, d),
then (E, ρ) ∈ RAS (S, k, t, d).

Given S, define the set of possible elements at each index i as Ai (S) and its size as
ni, i.e.,

Ai (S) ,
{
si : sk ∈ S

}
, (4.2)

ni(S) , |Ai (S)| . (4.3)

Furthermore, we define the average of {ni, 1 ≤ i ≤ k} as n̄(S) =
∑k

i=1 ni/k.
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With these definitions, we characterize the capacity region for the general-purpose
setting in the following theorem.

Theorem 4.2 (Capacity region for the general-purpose setting). The capacity re-
gion for a t-correcting redundant circuit for S with k functional elements and degree con-
straint d under the general-purpose setting is

RGP (S, k, t, d) = {(E, ρ) : E ≥ tn̄(S), ρ ≥ tn̄(S)/d} .

Remark 4.2. For the case of n̄(S) = |X |, the capacity region RGP (S, k, t, d) is the region
marked by dashed lines in Fig. 4-2.

We defer the detailed analysis to Section 4.3.1 and present some results on the achiev-
able region for the application-specific setting, as the exact characterization for the capac-
ity region of this setting is still open. For simplicity, we only consider the S = X n.

Theorem 4.3 (Achievable region and converse for the application-specific setting).
When S = X k, the achievable region for a t-correcting redundant circuit with k functional
elements and degree constraint d under the application-specific setting satisfies

When d < |X |,

RAS (S, k, t, d) ⊇ {(E, ρ) : E ≥ t, ρ ≥ t} ;

When d ≥ |X |,

RAS (S, k, t, d) ⊇
{

(E, ρ) : E ≥ t |X | /d, ρ ≥ t, ρ ≥ d− |X |
d− d |X |(E − t) + t

}
.

In addition, if E < t or ρ < t/d, then (E, ρ) /∈ RAS (S, k, t, d).

Theorem 4.3 is summarized in Fig. 4-2. and we defer the detailed discussion to Sec-
tion 4.3.2.

During the process of achievable region investigation, we discover the following two
design techniques, illustrated in Fig. 4-3, spatial sharing and circuit merging, that enable
us to generate new circuit designs with different performance parameters from existing
circuit designs.

Lemma 4.4 (Spatial sharing). Given two t-correcting redundant circuit C1 and C2 that
achieves (E1, ρ1) and (E2, ρ2) respectively, then for any 0 ≤ λ ≤ 1, we can obtain a
t-correcting redundant circuit that achieves (Eλ, ρλ), where

Eλ = λE1 + (1− λ)E2,

ρλ = λρ1 + (1− λ)ρ2.

Lemma 4.5 (Circuit merging). Given a t1-correcting redundant circuit C1 and a t2-
correcting redundant circuit C2 that achieves (E1, ρ1) and (E2, ρ2) respectively, then we
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0 t t |X |
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(a) d < |X |
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(b) d ≥ |X |

Figure 4-2: Characterization of the capacity region for the application-specific setting:
the shaded area is the achievable region, and the dashed line is one (not-necessarily tight)
outer bound of the capacity region.

can obtain a t1 + t2-correcting redundant circuit that achieves (E, ρ), where

t = t1 + t2,

E = E1 + E2,

ρ = ρ1 + ρ2.

We omit the proofs for Lemma 4.5 and Lemma 4.4 as they are straightforward.

� 4.3.1 Analysis for the general-purpose setting

In this section we characterize the capacity region of (E, ρ) for the general-purpose setting
by first proposing a redundant circuit design and then showing that it is indeed optimal.

The following redundant circuit construction algorithm finds the functional element
with the smallest normalized degree d̃eg (si) , deg (si) /ni(S), and then for each of its
possible element type x ∈ Ai (S), we connect an available redundant element (with degree
less than d) of the same type to it. We repeat this process until all functional elements
have normalized degree t, which guarantees the redundant circuit is t-correcting. It is not
difficult to see that for a given k, Algorithm 2 produces a redundant circuit Ck such that




ρ(Ck) =

tn̄+ |X | /k
d

,

E(Ck) = tn̄+ |X | d/k.
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(a) Spatial sharing.

km1 m2G1 G2

(b) Circuit merging.

Figure 4-3: Two circuit design techniques.

Therefore, given a sequence of redundant circuits {Ck, k ∈ Z+}, we have

lim
k→∞

ρ(C) =
tn̄

d

lim
k→∞

E(C) = tn̄

for any 0 ≤ t, d ≤ k.
The following lemma shows the construction provided by Algorithm 2 is indeed opti-

mal.

Lemma 4.6 (Converse for the general-purpose setting). Given d and S, any
t-correcting redundant circuit for the general-purpose setting satisfies

ρ ≤ tn̄

d
and E ≥ tn̄. (4.4)

We defer the detailed proof to Appendix A.4.1.

� 4.3.2 Analysis for the application-specific setting

In this section we first note that the capacity region for t-correcting redundant circuits
are convex, which following follows from Lemma 4.4 directly.

Corollary 4.7. The capacity region for t-correcting redundant circuits is convex.

Now we derive the inner bound of the capacity region for the application-specific setting
based on a few specific designs.
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Algorithm 2 Construction of the optimal G = (U ,V, E) for the general-purpose setting

Initialization: done← False, V ← {s1, s2, . . . , sk}, U ← ∅, E ← ∅,
while NOT done do

i∗ ← arg mini d̃eg (si)

if d̃eg (si∗) < t then
for x ∈ Ai∗ (S) do

if Exists r ∈ U such that deg (r) < d and r is a type-x element then
E ← E ∪ {(si∗ , r)}

else
Let r an element r with type x
U ← U ∪ {r}
E ← E ∪ {(si∗ , r)}

end if
end for

else
done← True

end if
end while

Lemma 4.8 (Designs for application-specific setting).

(E = t, ρt) ∈ RAS (S, k, t, d) (4.5)

(E, ρ) ∈ RAS (S, k, t, d) if E ≥ t |X | , ρ ≥ t |X | /d. (4.6)

Proof. (4.5) is achieved by the redundant circuits design Cdr, where each functional element
has its dedicated redundancy, as shown in Fig. 4-4. (4.6) follows from the fact that for
any S ⊂ X k,

RAS (S, k, t, d) ⊇ RGP

(
X k, k, t, d

)
.

We also derive the outer bound for the capacity region of application-specific setting.

Lemma 4.9 (Outer bound for the capacity region of application-specific setting).
In application-specific setting,

(a) any circuit that is t-correcting with E = t must have ρ ≥ t,

(b) (E, ρ) /∈ RAS (S, k, t, d) if E < t, ρ < t/d.

Proof. We defer the proof of (a) to Appendix A.4.2. (b) follows from the observation that
for any S ⊂ X k, RGP

(
sk, k, t, d

)
⊇ RAS

(
X k, k, t, d

)
, where sk is any element in S.

Finally, Lemma 4.4 and Lemma 4.8 leads to the achievable region in Theorem 4.3, while
Lemma 4.9 leads to the converse in Theorem 4.3.
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Figure 4-4: Redundant circuit Cdr: each functional element has t dedicated redundant
elements.

Comparing the general-purpose setting and the application-specific setting

In this section we show two examples to demonstrate the differences between the general-
purpose setting and the application-specific setting.

The first example shows how |X | impacts the error correcting capability differently in
these two settings.

Example 4.1. Given S = X k, for a redundant circuit C with adjacency matrix

G(k = 2,m = 2, d = 2) =

[
1 1
1 1

]
,

it is 1-correcting for both the general-purpose setting and the application-specific setting
when |X | = 2, but 1-correcting only for the application-specific setting when |X | = 3.

The second examples shows the error correcting capability in application-specific set-
ting in general depends on S and not just n̄(S).

Example 4.2. Given k = 4, d = 2, t = 1 and X = 1, 2, for application-specific setting, a
redundant circuit C with adjacency matrix

G(k = 4,m = 3, d = 2) =




1 0 0
1 1 0
0 1 1
0 0 1




is 1-correcting when S =
{

all sk with type (3/4, 1/4)
}

but not when S = X k.
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� 4.4 Probabilistic error correction setting

In this section we adopt a probabilistic error correction setting for the reliable circuit
design problem. We assume the elements in the redundant circuit fail independently with
probability ε, and define the event of a circuit failure, i.e., the existence of functional
elements that cannot be corrected as follows:

F
(
sk, rm,G

)
,
{

Given rm and G, sk cannot be fully corrected
}
,

then the error probability in the general-purpose setting and the application-specific set-
ting can be expressed as

PGP
e (S) , min

rm,G
max
sk∈S

P
[
F
(
sk, rm,G

)]

PAS
e (S) , min

rm
max
sk∈S

min
G

P
[
F
(
sk, rm,G

)]
.

By the min-max inequality [35],

PGP
e (S) ≥ PAS

e (S) .

For a given design setting, we say a redundant circuit is ε-reliable for S if it achieves
Pe (S)→ 0 in that setting as k →∞.

In our analysis, we first investigate the trade-off between circuit redundancy and wiring
complexity when the circuit is consists of a single-type of elements in Section 4.4.1, then
extend the results to multiple element types in Section 4.4.2.

As we shall see, for the circuits of interest in the probabilistic error correction setting,
the amount of interconnect |E| is on the order of k log k. As a result, we normalize the
wiring complexity by k log k and introduce a new definition of wiring complexity.

Definition 4.6 (Wiring complexity in probabilistic error correction setting). The
wiring complexity in probabilistic error correction setting is the same as Definition 4.3 ex-
cept (4.1) is changed to

E(C) , |E|/(k log k).

Again, we introduce the notion of capacity region, which is the central object of interest
in our analysis.

Definition 4.7 (Capacity region in probabilistic error correction setting). Given
S, a design setting (general-purpose or application-specific) and a set R of (E, ρ) pairs, if
(E, ρ) is achievable for some ε-reliable redundant circuit for S if and only if (E, ρ) ∈ R,
then we say the ε-reliable redundant circuit for S has capacity region R.

� 4.4.1 Analysis of redundant circuit with a single element type

In this section we investigate the problem of designing redundant circuit when there is
only one type of element, i.e., |X | = 1. In this case the general-purpose setting and the
application-specific setting are equivalent. As we shall see later, results in this section
serve as useful building blocks for analysis of more general cases.

Our main results are summarized in the following theorem.
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Figure 4-5: The redundancy-wiring complexity trade-off for redundant circuit with one
type of element in the probabilistic error correction setting.

Theorem 4.10 (Redundancy-wiring complexity trade-off). If |X | = 1, then any
ε-reliable redundant circuit requires

{
ρ(G) ≥ ε/(1− ε)
E(G) ≥ −1/ log ε

. (4.7)

In addition, for |X | = 1, there exist different sequences of ε-reliable redundant circuits
{Ck, k ∈ Z+} that achieve

(ρ,E) = (ε/(1− ε), 1/(1− ε)) (4.8)

and

(ρ,E) = (∞,−1/ log ε) (4.9)

respectively.

The redundancy-wiring complexity trade-off in Theorem 4.10 is illustrated in Fig. 4-5.
The design corresponds to (4.8) achieves minimum circuit redundancy ρ, but has a wiring
complexity larger than the lower bound in (4.7). By contrast, the design corresponds to
(4.9) achieves minimum wiring complexity, but has infinite circuit redundancy.

Remark 4.3. Since

1

1− ε − 1 ≤ 1

log(1/ε)
≤ 1

1− ε,
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the gap between achievability and converse in E is at most 1.

To prove Theorem 4.10, We first show that there exists redundant circuit designs via
random graph that achieves (ρ,E) = (ε/(1− ε), 1/(1− ε)) in the following lemma.

Lemma 4.11 (Redundant circuit via random bipartite graph). Let the intercon-
nect Gk of Ck be a random bipartite graph G(m, k, pk) with edge probability

pk =
log k + w(k)

m
,

where w(k)→∞ as k →∞, then the sequence of redundant circuit {Ck, k ∈ Z+} achieves
(ρ,E) = (ε/(1− ε), 1/(1− ε)).
Then we show with proper parameters, redundant circuit Cdr in Fig. 4-4 achieves (ρ,E) =
(∞,−1/ log ε).

Lemma 4.12 (Probabilistic error correction of Cdr). The redundant circuit Cdr in
Fig. 4-4 with t = − log ε achieves (ρ,E) = (∞,−1/ log ε).

Finally we show the converse via the following two results.

Lemma 4.13 (Lower bound on redundancy). Any ε-reliable redundant circuit requires
ρ ≥ ε/(1− ε).
Lemma 4.14 (Lower bound on redundancy). Any ε-reliable redundant circuit requires
E ≥ 1

log(1/ε) .

We defer all proofs in this section to Appendix A.5.

� 4.4.2 Analysis of redundant circuit with multiple element types

In this section we extend the results in Section 4.4.1 to redundant circuit with multiple
element types. Our first result shows a result analogous to Theorem 4.10 holds in the
general-purpose setting.

Theorem 4.15. For general-purpose setting, any ε-reliable redundant circuit satisfies

ρ ≥ n̄(S)ε

1− ε ,

E(G) ≥ n̄(S)

log(1/ε)
,

where n̄(S) is defined in (4.3). In addition, there exist different sequences of ε-reliable
redundant circuit {Ck, k ∈ Z+} that achieve

(ρ,E) = (n̄(S)ε/(1− ε), n̄(S)/(1− ε))

and
(ρ,E) = (∞, n̄(S)/ log(1/ε))

respectively.
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We omit the proof due to its similarity to the proof of Theorem 4.10.
Regarding application-specific setting, while it is easy to propose redundant circuit

designs, the performance analysis is more difficult. We leave this topic for future explo-
ration.

� 4.5 Concluding remarks

In this chapter we analyze the design of redundant circuit in both deterministic and
probabilistic setting, focusing on the trade-off between circuit redundancy and wiring
complexity. Our results indicate that to correct t = εk errors, in the deterministic setting
|E| = Θ

(
k2
)

is necessary, while in the probabilistic setting |E| = k log k. Therefore,
by allowing an asymptotically vanishing probability of error, we can reduce the wiring
complexity dramatically from Θ

(
k2
)

to Θ (k log k). In addition to showing the advantage
of considering probabilistic error correction, we also propose concrete redundant circuit
designs such as Cdr in Fig. 4-4 and a design based on the random bipartite graph in
Lemma 4.11, which achieves near-optimal redundancy-wiring complexity trade-off in the
probabilistic error correction setting, as indicated in Theorem 4.10.

The results in this chapter represent a preliminary investigation of the problem of
redundant circuit design, While our model enables mathematical analysis, there are a few
important aspects in practical circuit design that need to be incorporated. The most
important aspect is probably placement and routing, as our bipartite graph model does
not capture the geometry location of circuit elements. Besides, in practice the component
failure probability needs to be estimated, and may be correlated due to the clustering of
fabrication defects. Therefore, a more realistic error model is called for. Nonetheless, our
results provide insights on the fundamental problem of redundant system design subject
to redundancy sharing constraints, and serves as a starting point for more realistic design
and analysis.

Furthermore, a few research directions could offer new opportunities in reliable digital
circuit design. First, in systems like Field-programmable gate array (FPGA), the elements
are configurable, and hence it would be interesting to explore the case when functional
and/or redundant elements are configurable, which may offer better performance trade-
offs and lead to new designs. Second, in our model we assume homogeneous circuit
components, where the redundancy and functional elements have the same reliability. It
may be possible that building less reliable redundant elements at a lower cost (in terms of
area, power, etc.) actually leads to better performance trade-off between reliability and
resource usage. Finally, in our probabilistic setting we show it is beneficial to tolerate an
asymptotically vanishing probability of error. However, it may be even more beneficial to
tolerate a fixed probability of error, say 0.2. This calls for non-asymptotic analysis of the
performance of redundant circuits.
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Scheduling parallel tasks with
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Chapter 5

On scheduling parallel tasks

Just as fault-tolerant computing aims to create a reliable whole out of
less-reliable parts, large online services need to create a predictably
responsive whole out of less-predictable parts.

J. Dean and L. A. Barroso, The tail at scale
Communications of the ACM, 2013

In this chapter we investigate the role of replication in scheduling a computation job
that consists of a collection of parallel tasks1, where there is no interdependency among
these tasks, and the completion time of each task is stochastic. This problem occurs in
many contexts, such as cloud computing and crowd sourcing. We are interested in the
latency of obtaining results for the entire collection of task, which is determined by the
completion time of the task that finishes last. In particular, we aim to understand how
replication (executing the same task more than once) reduces the latency, and impacts
resource usage, which provides guidance to system users on when and how to use repli-
cation. To the best of our knowledge, we establish the first theoretical analysis of task
replication, with the system model and relevant performance measures proposed.

The rest of the chapter is organized as follows. After introducing the motivating appli-
cations in Section 5.1, we review the prior practical system implementations in Section 5.2
and point out the need for a corresponding theory. Then we formulate the problem in Sec-
tion 5.3 and propose the performance measures of interest. Based on our formulation, in
Section 5.4 we demonstrate that replication can indeed be very useful via a simple exam-
ple. Then in Section 5.5, we describe the two approaches we use to analyze the scheduling
problem. The detailed analysis are presented in Chapter 6 and Chapter 7 respectively.
Finally, we conclude this chapter with a discussion on the implication of our results in
scheduling policy design in Section 5.5.

� 5.1 Motivating applications

The problem of executing a collection of tasks in parallel appears in many distributed
systems. In this section we mention two emerging applications: cloud computing and
crowd sourcing.

Executing parallel tasks in cloud computing

One of the typical scenarios in cloud computing is large scale computation in a data
center with a large number of computers, which is pioneered by companies like Google
with the support from distributed computing frameworks such as MapReduce [36] and

1Note that in some literature the usage of “task” and “job” is reversed, i.e., a task is consists of a
collection of jobs.
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50%ile latency 95%ile latency 99%ile latency

One task finishes 1ms 5ms 10ms
All tasks finish 40ms 87ms 140ms

Table 5.1: Execution times for a job consists many tasks in the Google data center.

Percolator [37], and distributed storage systems such as Google File System [38] and
BigTable [39].

Executing a large collection of parallel tasks is an important category of computation
in data centers, which is sometimes called “embarrassingly parallel ” computation [40].
While appearing to be simplistic, embarrassingly parallel computation happens (either in
part or in whole) in many non-trivial application, such as the “Map” stage of MapReduce,
genetic algorithms, and the tree growth step of random forest. Furthermore, researchers
aim to design algorithms that can be run in an embarrassingly parallel fashion so that
they can be applied in a distributed setting easily, such as parallel alternating direction
method of multipliers (ADMM) [41], and Markov Chain Monte-Carlo (MCMC) [42].

One key challenge for executing a large collection of tasks is the long overall response
time. Due to co-hosting, virtualization and other hardware and network variations [43], the
task execution time of computing nodes in a data center is subject to stochastic variations.
At a result, latency determined by the slowest component could degrade the performance
significantly. For example, Table 5.1, paraphrased from [43, Table 1], shows that for a
single task, the 99-percentile latency (10ms) could be 10 times its median latency (1ms),
and as a result, the latency of execution the entire collection of tasks, even in parallel,
could increase to 140ms, much longer than the latency of a single task!

Executing parallel tasks in crowd sourcing

Crowdsourcing is a process that distributes tasks to a group of people, with the objec-
tive to achieve some common goal. Crowdsourcing exists in many forms. For example,
crowdsourcing platforms such as Amazon Mechanical Turk [44] or oDesk [45] have been
built to allow requesters post tasks at various prices and workers solve these tasks for a
corresponding amount of compensation.

In many crowd sourcing scenarios, tasks are independent among each other and are
assigned to different workers. Each worker may take a different amount of time to complete
his/her task, and these completion times may be model as random variables. Therefore,
again we have a collection of parallel tasks with stochastic execution time.

� 5.2 Related prior work

The idea of replicating tasks has been recognized by system designers for parallel compu-
tation [46, 47], and is first adopted in cloud computing via the “backup tasks” in Map-
Reduce [36]. A line of system work [48–51] further develops this idea to handle various
performance variability issues in data centers.

While task replication has been adopted in practice, to the best of our knowledge, it has
not been mathematically analyzed, and the trade-off between latency reduction and addi-
tional resource usage is unclear. By contrast, for scheduling without task replication, there
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exists a considerable amount of work on stochastic scheduling, i.e., scheduling problems
with stochastic processing time (e.g., [52–61]). In addition, existing system work [48–51]
usually investigates the latency of all tasks from all different jobs in the system, while we
analyze the latency of tasks from the same job, which is more meaningful from a user’s
perspective.

Finally, we note that using replication or redundancy to reduce latency has recently
attracted attention in other application contexts such as data transfer [62–65].

� 5.3 Problem formulation

In this section we first introduce the additional notation in this part of the thesis in
Section 5.3.1, then we describe the system model in Section 5.3.2, and finally we propose
the performance metrics in Section 5.3.3.

� 5.3.1 Notation

In addition to the notation introduced in Section 1.1, we introduce the following notation
in this part of the thesis.

We denote the upper end point of a c.d.f. FX by

ω (FX) , sup {x : FX(x) < 1} . (5.1)

Note that for A = min {B,C},

ω (FA) = min {ω (FB) , ω (FC)} .

We define the complement c.d.f., which may be more convenient to use than the c.d.f.
sometimes.

F̄X(x) , 1− FX(x).

We denote one-sided limits from above and below a ∈ R as x→ a+ and x→ a−.
We denote the empirical cumulative distribution function based on X1, X2, . . . , Xn as

Fn(x), and define the p-quantile of a distribution as

xp , F
−1 (p) , inf {x ∈ R : F (x) ≥ p} .

For 0 ≤ p ≤ 1, we use p̄ as a shorthand of the quantity 1− p.
We use [a, t] and [t, a] to denote the vector resulting from inserting an element a to

the head and tail respectively of the vector t.

� 5.3.2 System model

Motivated by applications in Section 5.1, we are interested in the problem of executing
a collection of parallel tasks. Since the resources in cloud computing and crowd sourcing
systems are usually requested on-demand, we consider the case of having access to an
unlimited pool of computing nodes. In the cloud computing context, each computing node
is a computer (or a virtual machine), while in the crowd sourcing context, each node is a
worker. We assume the executing time of each task on a computing node is i.i.d., where
the variation of execution time comes from the variability in the computing nodes, as
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discussed in Section 5.1. Mathematically, we are given a collection of n tasks, each with
i.i.d. execution time distribution FX .

A scheduling policy or scheduler assigns tasks to different nodes, possibly at different
time instants. In this chapter, we focus our attention on the case that a scheduler can
take the following actions:

1. AddTaskToNode: the scheduler requests a node to use from the pool of available
nodes and sends a task to run on the node.

2. TerminateTask: the scheduler shuts down all nodes that are running the same task.

Remark 5.1. While we restrict our attention to two key scheduler actions, AddTaskToN-
ode and TerminateTask, in practice more actions may be available, such as TerminateNode,
which offer additional degrees of freedom in scheduling policy design. An example of the
available scheduler options is listed in the documentation of the Google Cluster Data [66].

We assume instantaneous node completion feedback is available from each node, noti-
fying the scheduler when it finishes executing the assigned task. With node completion
feedback information, assuming we always terminate all copies of task i when the earliest
copy of task i finishes, the performance of a scheduling policy is determined by the times
for action AddTaskToNode only.

Remark 5.2. Instantaneous node completion feedback is a reasonable approximation as
in the regime that latency is of interest, the task execution time is usually much longer
than the delay in obtaining feedback, such as the transmission delay in a data center.

Disjoint and joint scheduling policies

We categorize scheduling policies into two categories, disjoint and joint policies. A disjoint
scheduling policy schedules each task without taking the execution dynamics of other tasks,
i.e., the start and finish times of other tasks, into account, and hence can determine the
possible tasks starting times at time t = 0. We can express it as

πSL =
[
(i, ti,j), i ∈ [n], ti,j ∈ R+, j ∈ Z+

]
,

where the policy launches the j-th copy of task i if task i is not terminated by time ti,j
2.

By contrast, a joint scheduling policy takes the execution dynamics of other tasks into
account, and hence may change the starting time vector during the execution process.

Remark 5.3. While the disjoint scheduling policy takes less information into account and
hence could be potentially less efficient, it allows better resource provisioning as we know
the entire starting vector at t = 0. This may be of interest in certain cloud computing
environments. Moreover, as we shall see later, understanding the disjoint scheduling policy
is useful for analyzing joint scheduling policy as well.

2Strictly speaking, a disjoint policy may have starting times that are random variables that do not
depend on other tasks. In this thesis we choose to not consider this case.
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� 5.3.3 Performance metrics

Section 5.2 shows that task replication is useful in speeding up the computation of a
collection of parallel tasks, which is rather intuitive. However, this is at the cost of adding
more computation resources. Therefore, it is crucial to understand the trade-off between
computation speed-up and additional usage of computation resources. For this purpose,
we define two corresponding key performance measures, latency and resource usage, and
analyze their trade-off in a variety of scenarios later, which provide insights on when and
how replication is useful.

Latency is the time that at least one copy of every task in the job finishes running. More
specifically, given n tasks, let the latency for task i be Ti, the latency of the computation
be T , and Xi,j , 1 ≤ j ≤ ri + 1 be the execution time of the j-th copy of task i if it is not

terminated, where Xi,j
i.i.d.∼ FX , then given a scheduling policy π that launches the j-th

copy of task i at ti,j , 1 ≤ i ≤ n, 1 ≤ j ≤ ri + 1, where ri + 1 is the number of copies for
task i, we have the following expression for latencies:

Ti(π) , min
1≤j≤ri+1

(ti,j +Xi,j), (5.2)

T (π) , max
i

Ti(π). (5.3)

Note that in (5.2) we take the minimum as we only need to wait for the earliest copy of
task i to finish, while in (5.3) we take the maximum as we need to wait for all tasks in
the job to finish.

The modeling of resource usage depends on the application, and we propose two ver-
sions of the cost function for cloud computing and crowd sourcing respectively.

Cost for cloud users: For a user of a public cloud such as the Amazon Web Service
(AWS), which charges the user by time and by node, we use the notion of total running
time, which is the sum of the amount of running times for all computing nodes. More
specifically, for the j-th node that runs task i, if the node starting time ti,j ≤ Ti, then it
runs for Ti − ti,j seconds, otherwise it does not run at all. Hence, the running time for
this node is |Ti − ti,j |+. Therefore,

Ccloud (π) ,
n∑

i=1

ri+1∑

j=1

|Ti − ti,j |+ . (5.4)

Cost for crowd sourcing In crowd sourcing, it is common that workers are paid a
fixed amount of compensation for a given task. Therefore, the resource usage cost is
proportional to the total number of computing nodes (workers), leading to the following
cost:

Ccrowd (π) ,
n∑

i=1

ri+1∑

j=1

1 {Ti < ti,j} . (5.5)

For brevity, we may omit the π in T (π) and C(π) if it is clear from context.
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N1
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X1,1

X1,2

X2,1

X2,2

T1 = 8 T2 = 100 t1,2 = 2 t2,2 = 5

t

Figure 5-1: Example illustrating a scheduling policy and its performance measures. For
the two given tasks, task 1 has latency 8 and task 2 has latency 10, leading to an overall
latency of 10. The cloud user cost is 29, while the crowd sourcing cost is simply 4.

Fig. 5-1 shows an example illustrating a scheduling policy and its corresponding latency
and costs. Given two tasks, we launch task 1 on nodes N1 and N2 at t1,1 = 0 and t1,2 = 2
respectively, and task 2 on nodes N3 and N4 at t2,1 = 0 and t2,2 = 5 respectively. The
running time X1,1 = 8 and X1,2 = 7, and since node 1 finishes the task first at time
t = 8, T1 = 8 and node 2 is terminated before it finishes executing. Similarly, node 3 is
terminated as node 4 finishes task 2 first at time T2 = 10. The latency of this computation
is T = max {T1, T2} = 10. For a cloud user, the cost is the sum of all the nodes’ actual
running time, i.e., Ccloud = 8 + 6 + 10 + 5 = 29, while for a crowd sourcing user, the cost
is simply the number of nodes that execute the task, i.e., Ccrowd = 4.

Both of these performance measures are random variables, and in this thesis we choose
to use their expected values as the performance metrics of interest, which correspond to
the long-term average performance of scheduling policies.

� 5.4 Motivating example

In this section we consider the following example, which shows in certain scenarios, task
replication reduces both E [T ] and E [C], even for a single task.

Let the execution time X satisfy

X =

{
2 w.p. 0.9

7 w.p. 0.1
.

If we launch one task and wait for its completion, then the latency distribution is
illustrated in Fig. 5-2a, and

T = 2× 0.9 + 7× 0.1 = 2.5, (5.6)

Ccloud = T = 2.5. (5.7)

If we launch a task at time t1 = 0 and then launch a replicated task at time t2 = 2 if the
first one has not finished running by then, we have the latency distribution in Fig. 5-2b,
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2

0.9

7

0.1

0
t

(a) PT without replication
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(b) PT with replication at t = 2

Figure 5-2: Latency distribution under two different scheduling policies.

and in this case,

T = 2× 0.9 + 4× 0.09 + 7× 0.01 = 2.23,

Ccloud = 2× 0.9 + (4 + 2)× 0.09 + (7 + 5)× 0.01 = 2.46.

As we see here, introducing replication actually reduces both expected cloud computing
cost and expected execution time!

� 5.5 Two approaches for analyzing scheduling policies

With the example in Section 5.4 demonstrating the usefulness of replication, in this part
of the thesis, we attempt to understand the trade-off between latency and resource usage
of scheduling parallel tasks in more general scenarios. We conduct our analysis via the
two different approaches, in Chapter 6 and Chapter 7 respectively.

In Chapter 6, we first investigate a specific class of policies called the single-fork policy,
which include the backup tasks option in MapReduce as a special case. We conduct our
investigation by assuming the execution time distribution are continuous, which allow us
to leverage tools from order statistics and extreme value theory and obtain asymptotic
characterizations of latency and resource usage. From these characterizations we obtain
guidance on when to replicate and how much to replicate. Furthermore, we define another
class of scheduling policies called the multi-fork policy in Section 6.4 that supports repli-
cation at multiple time instants. We show that the performance of a multi-fork policy can
be analyzed by decomposing it to a scheduling with single-fork policies in multiple stages.

In Chapter 7, we investigate general scheduling policies by adopting discrete execution
time distributions, and characterize the trade-off between latency and resource usage via
a cost function that take both factors into account. Our analysis on the cost function
reduces the search space for the optimal policy, and we also propose heuristic scheduling
policies that have lower computational complexity.

Both of these approaches provide us with trade-offs between the latency and resource
usage, leading to the following scheduling policy design flow:

1. estimate the execution time distribution from the traces of historical task execution
times (e.g., Google Cluster Data [66]);

2. choose the one of the above analysis approaches to derive the trade-off between
latency and resource usage;
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3. depending on the latency or resource usage constraint, choose a proper point to
operate on the trade-off curve

4. find the scheduling policy corresponding to this point.

For both approaches, we rely on the assumption that the execution time distribution
is given, while in practice this needs to be estimated. Therefore, there is an issue in terms
of the robustness of the scheduling policy, i.e., its performance when the execution time
distribution is inaccurate. On this issue, we first note that there exists vast literature on the
inference for distribution and order-statistics(e.g., [67–70], and we can leverage existing
inference methods, especially robust ones (semi-parametric or non-parametric methods),
to obtain the execution time distribution and the corresponding order statistics.

Besides the plug-in approach of estimate-then-schedule, an interesting research di-
rection is to develop adaptive scheduling algorithms that directly works with unknown
execution time distribution. This shares some similarity to the celebrated multi-arm ban-
dit problem, as there is a trade-off between the exploration of execution time distribution
and the exploitation of this execution time distribution.
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Chapter 6

Design and analysis of forking policies

In this section we investigate two classes of scheduling policies, the single-fork policy
and the multi-fork policy. Both classes of policies replicate all unfinished tasks at certain
time instants, and we call these two classes of policies forking policies. These policies
include certain practical implementations, such as the backup task option in Google
MapReduce, as special cases. In our analysis, we model execution times of parallel tasks as
continuous random variables because this enables us to leverage tools from order statistics,
especially extreme value theory, to derive the trade-off between latency and resource usage
analytically.

The rest of the chapter is organized as follows. We first define the single-fork policy
in Section 6.1 and express its performance measures in terms of order statistics. Then we
introduce some results from order statistics Section 6.2 that help to analyze these order
statistics. With these results, we analyze single-fork policies in Section 6.3. Finally, we
show that our analysis of single-fork policy can essentially be applied to its extension, the
multi-fork policy in Section 6.4.

� 6.1 Single-fork policy and its performance measures

In this section we define the single-fork policy mathematically and express its performance
measures in terms of order statistics.

Definition 6.1 (Single-fork scheduling policy). Given n tasks with i.i.d. execution
time distribution FX , a single-fork scheduling policy πSF (p, r, l;n, FX) launches all n task
at time t = 0 via the AddTaskToNode operation, wait until there are pn unfinished tasks,
and choose one of the following two actions:

replicate without relaunching: launch r new copies for all unfinished tasks;

replicate with relaunching: terminate the current copy of all unfinished tasks and launch
r + 1 new copies for each of these tasks.

Then for each task, the result from the copy that finishes earliest is used and all the other
copies are terminated via the TerminateTask operation.

We use l = 0 to denote the case of relaunching and l = 1 the case of no relaunching.
We omit FX in πSF (p, r, l;n, FX) for brevity when it is clear from the context.

As we shall see, relaunch or not impacts the performance of a scheduling policy, and these
two actions are illustrated in Fig. 6-1.

We note that p = 0 corresponds to the case of simply running n tasks in parallel, while
r = 0 does not necessarily correspond to that because with l = 0 we relaunch pn tasks.
We also note that a single-fork policy is a joint policy (cf. Section 5.3.2 for definition).
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task k
original copy

replica 1
... ...

replica r

“fork”

(a) Single fork with no relaunching

task k

new replica

replica 1
... ...

replica r

“fork”

(b) Single fork with relaunching

Figure 6-1: Illustration of single-fork policies with and without relaunching.

Example 6.1 (Backup tasks in MapReduce). Our single-fork policy captures the
backup tasks option in the Google MapReduce framework [36]. With this option, Map-
Reduce initially distributes a collection of tasks to available computing nodes, and later
re-executes the last few of the unfinished tasks to reduce the computation delay due to
“stragglers” (computers that run unusually slow). Empirically, this scheduling policy works
well. For example, it reduces the latency by 1/3 in distributed sort [36]. Following our
notation, r = 1, p = 0.1 and l = 1 is used in [36].

Below we analyze the latency and resource usage for the single-fork policy, and show
that both quantities can be represented as functions of various order statistics. We defer
all proofs in this section to Appendix B.2.

The latency of a single fork policy πSF (p, r, l;n) can be decomposed into two parts:

• T (1) (πSF): the time to execute the first p̄n tasks,

• T (2) (πSF): the time to execute the rest of the pn tasks with replication.

It is straightforward that
T (1) (πSF) = Xp̄n:n.

At time T (1), there are pn unique tasks remaining, and we denote their remained running
time after replicating each of them r times by Yj , 1 ≤ j ≤ pn. The analysis of these new
running times {Yj} can be facilitated via a concept called conditional excess distribution.

Definition 6.2 (conditional excess distribution). Given X ∼ FX and t, the condi-
tional excess distribution F∆X,t

(x) is defined via its complement F̄∆X,t
(x), i.e.,

F̄∆X,t
(x) =

F̄X (t+ x)

F̄X (t)
, 0 ≤ x ≤ ω (FX)− t. (6.1)

For each of the remaining task j, the additional running time for the original copy is
∆Xj ,T ∗ , where T ∗ = l ·T (1). For the newly launched r copies, it takes X ′1:r for the earliest

copy to finish, where X ′i
i.i.d.∼ FX , 1 ≤ i ≤ r. Therefore, Yj is the minimum of two random

variables, ∆Xj ,T ∗ and X ′1:r. We summarize these results in the following lemma.
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Lemma 6.1. All Yj
i.i.d.∼ FY , and F̄Y (y) is a function g(FX , r, l) that satisfies

F̄Y (y) = g (FX , r, l) , F̄∆X,T∗ (y)
(
F̄X (y)

)r
, (6.2)

where T ∗ = l · T (1) and the expression for F̄∆X,T∗ (y) is given in (6.1).

Noting the latency for πSF (p, r, l;n) satisfies

T (πSF) = T (1) (πSF) + T (2) (πSF)

= Xp̄n:n + Ypn:pn,

we can have the expected latency expression in Theorem 6.2.

Theorem 6.2 (Expected latency). The latency of a single fork policy πSF (p, r, l;n, FX)
satisfies

E [T (πSF)] = E [Xp̄n:n] + E [Ypn:pn] , (6.3)

where Y is specified in (6.2).

Similarly, the cost of a single fork policy πSF (p, r, l;n) can be decomposed into two parts:

• C(1) (πSF): the cost to execute the first p̄n tasks,

• C(2) (πSF): the cost to execute the rest of the pn tasks with replication.

This leads to the expected cost expression in Theorem 6.3.

Theorem 6.3 (Expected cost). The cost of a single fork policy πSF (p, r, l;n) satisfies

E [Ccloud (πSF)] =

p̄n∑

i=1

E [Xi:n] + pnE [Xp̄n:n] + (r + 1)(pn)E [Y ] , (6.4)

Ccrowd (πSF) = n+ npr. (6.5)

Setting p = 0 we obtain the performance of no task replications:

T = Xn:n,

Ccloud =

n∑

i=1

Xi:n =

n∑

i=1

Xi,

Ccrowd = n.

Now we proceed to Section 6.2, where we introduce results in order statistics that are
useful in analyzing (6.3) and (6.4). In particular, we will introduce results on central
order statistics and the extreme value theorem, which help to analyze the two terms in
(6.3), as shown below.

79



CHAPTER 6. DESIGN AND ANALYSIS OF FORKING POLICIES

FX X(1−p)n:n

FY Ypn:pn

result on central order statistic

Y = g(FX , r, l)

extreme value theorem

� 6.2 Order statistics: definitions and results

In this section we introduce some definitions in order statistics and some results that play
important roles in the performance analysis of scheduling policies later in Section 6.3. In
particular, we show that order statistics in different regimes have different concentration
behavior in Sections 6.2.1 to 6.2.3 respectively.

The notation for order statistics is first introduced in Section 1.1 on Page 18.

� 6.2.1 Central order statistics

For an order statistic Xk:n, we called it a central order statistic if k ≈ np for some p ∈ (0, 1).
In this case, Xk:n is asymptotically normal distributed with the p-th quantile of X as its
mean, as indicated by the following result.

Theorem 6.4 (Theorem 10.3 in [68]). Given X1, X2, . . . , Xn
i.i.d.∼ F , if 0 < p < 1

and 0 < f(xp) <∞, where xp = F−1 (p), then for k = k(n) such that k = np+ o (
√
n),

Xk:n
P→ N

(
xp,

p(1− p)
nf2(xp)

)

where f(·) is the p.d.f. corresponds to F and
P→ denotes convergence in probability as

n→∞.

Therefore, when n is large, Xk:n is tightly concentrated around xp.

� 6.2.2 Extreme order statistics

Extreme value theory (EVT) is an asymptotic theory regarding the sample extremes, i.e.,
minima and maxima. It shows that if a distribution belongs to a certain class (domain
of attraction in Theorem 6.6), then its maxima can be well characterized asymptotically.
More specifically, given n i.i.d. random variables X1, X2, . . . , Xn, if a non-degenerate limit
distribution of the sample extreme Xn:n exists after proper shifting and scaling, then the
distribution of this sample extreme belongs to a class of distributions Gγ , which is called
extreme value distributions.

Theorem 6.5 (Fisher-Tippett-Gnedenko theorem, Theorem 1.1.3 in [71]). Given

X1, . . . , Xn
i.i.d.∼ F , if there exist sequences of constants an > 0 and bn ∈ R such that

P [(Xn:n − bn)/an ≤ x]→ Gγ(x) (6.6)
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as n→∞ and Gγ(·) is a non-degenerate distribution, then

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0,

with γ real and where for γ = 0 the right-hand side is interpreted as exp (−e−x).

If a distribution function satisfies (6.6) with Gγ for some γ ∈ R, we say the distribution
function F is in the domain of attraction of Gγ , and denote it as F ∈ DA (Gγ).

The behavior of Gγ(·) depends primarily on the sign of γ. Theorem 6.6 specifies the
necessary and sufficient condition for a distribution function F to be in the domain of
attraction that corresponds to γ in a certain range. Furthermore, Corollary 6.7 provides
the normalization coefficients and the resulting limiting distribution.

Theorem 6.6 (Domain of attractions, Theorem 1.2.1 in [71]). A distribution func-
tion F is in the domain of attraction of the extreme value distribution Gγ if and only if

1. For γ = 0: there exists η(x) > 0 such that

lim
x→ω(F )−

F̄ (x+ tη(x))

F̄ (x)
= e−t;

2. For γ > 0: ω (F ) =∞ and

lim
x→∞

F̄ (tx)

F̄ (x)
= t−1/γ , t > 0;

3. For γ < 0: ω (F ) <∞ and

lim
x→0+

F̄ (ω (F )− tx)

F̄ (ω (F )− x)
= t−1/γ , t > 0;

where ω (·) is defined in (5.1).

Corollary 6.7 (Corollary 1.2.4 in [71]). The constants an, bn, and the distribution
function Gγ(·) in (6.6) satisfy

1. For γ = 0,

an = η
(
F−1(1− 1/n)

)
,

bn = F−1(1− 1/n),

and Gγ(x) with γ = 0 is called the Gumbel distribution,

Λ(x) = exp {− exp (−x)} . (6.7)
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2. For γ > 0,

an = F−1(1− 1/n),

bn = 0,

and Gγ(x) with γ > 0 is called the Fréchet distribution with α = 1/γ > 0,

Φα(x) =

{
0 x ≤ 0

exp {−x−α} x > 0
. (6.8)

3. For γ < 0,

an = ω (F )− F−1(1− 1/n),

bn = ω (F ) ,

and Gγ(x) with γ < 0 is called the reversed-Weibull distribution with α = −1/γ > 0,

Ψα(x) =

{
exp {− (−x)α} x < 0,

1 x ≥ 0.
(6.9)

Remark 6.1. We called the distribution in (6.9) the reversed Weibull distribution as the
ordinary Weibull distribution arises in reliability applications has distribution function

F (y;α) =

{
1− e−yα y ≥ 0

0 y < 0
,

which indicates a strictly positive support.

We say a distribution function F ∈ DA (Λ) if F ∈ DA (Gγ) with γ = 0 in Theorem 6.6,
and F ∈ DA (Φα) for γ = 1/α > 0 and F ∈ DA (Ψα) for γ = −1/α < 0. As we have
seen, being in a different domain of attraction leads to different asymptotic behavior for
the extreme values.

Remark 6.2. Intuitively, F ∈ DA (Λ) corresponds to the case that F̄ has an exponen-
tially decaying tail, F ∈ DA (Φα) corresponds to the case that F̄ has heavy tail (such as
polynomially decaying), and F ∈ DA (Ψα) corresponds to the case that F̄ has a short tail
with finite upper bound.

We can characterize the limit distribution of the sample extreme X1:n analogously via
Theorem 6.6 by

X1:n = min {X1, . . . , Xn} = −max {−X1, . . . ,−Xn} .

It is worth noting that the distribution function for −X may be in a different domain of
attraction from that of X.
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� 6.2.3 Intermediate order statistics

When k →∞ and n− k →∞, such that k/n approaches 0 or 1, Xk:n is an intermediate
order statistic and its asymptotic result falls somewhere between the extreme and central
order cases, and one of the characterizations is provided in Theorem 6.8.

Theorem 6.8 (Theorem 10.8.1 in [68]). Given X1, X2, . . . , Xn
i.i.d.∼ F , if F is in

DA (Λ) ,DA (Φα) or DA (Ψα), then as k → ∞ and k/n → 0, with pn = 1− k/n, then let
xpn = F−1 (pn),

Xn−k+1:n
d→ N

(
xpn ,

k

nf2(xpn)

)
,

where f(·) is the p.d.f. corresponds to F and
d→ denotes convergence in distribution as

n→∞.

� 6.3 Single-fork policy analysis

With the setup in Section 6.1 and the results in Section 6.2, in this section we analyze
the asymptotic characterizations of these performance metrics in Section 6.3.1, and finally
apply these characterizations to two canonical execution time distributions, Pareto and
shifted exponential, to draw insights for system design in Section 6.3.2. We defer all proofs
in this section to Appendix B.2.

� 6.3.1 Performance characterization

In this section we apply results presented in Section 6.2 to calculate the asymptotic ex-
pected latency and resource usage expressions in Theorem 6.2 and Theorem 6.3.

We introduce an assumption that greatly simplifies our analysis.

Simplifying assumption: From now on we assume T (1) = xp̄, because by Theorem 6.4
and Theorem 6.8, for any 0 < p < 1, T (1) converges to xp̄ quickly as n → ∞. As we
shall see later from the simulation results, the inaccuracy introduced by this assumption
is negligible. As a result, we denote T ∗ = l · xp̄.

With this assumption, Lemma 6.9 below indicates FY introduced in Lemma 6.1 is in
the same domain of attraction as FX , as indicated in Lemma 6.9.

Lemma 6.9 (Domain of attraction for FY ). Given a single fork policy πSF (p, r, l;n)
with 0 < p < 1,

1. if FX ∈ DA (Λ), then FY ∈ DA (Λ);

2. if FX ∈ DA (Φα), then FY ∈ DA
(
Φ(r+1)α

)
;

3. if FX ∈ DA (Ψα), then FY ∈ DA
(
Ψ(lr+1)α

)
.

Knowing the domain of attraction for FY , we can apply Theorem 6.5 to analyze the latency
of the second stage Ypn:pn, and obtain Theorem 6.10 on its expected value.

83



CHAPTER 6. DESIGN AND ANALYSIS OF FORKING POLICIES

Theorem 6.10. When n→∞,

E [Ypn:pn] =





ãpnγEM + b̃pn FX ∈ DA (Λ)

ãpnΓ (1− 1/[(r + 1)α]) FX ∈ DA (Φα)

ω (FY )− ãpnΓ (1 + 1/[(((1− l)r + 1)α]) FX ∈ DA (Ψα)

,

where ãpn and b̃pn are the normalizing constants of FY for its domain of attraction (cf.
Corollary 6.7), γEM is the Euler-Mascheroni constant, and Γ(·) is the Gamma function,
i.e.,

Γ(t) ,
∫ ∞

0
xt−1e−x dx. (6.10)

The coefficients ãpn and b̃pn for FY can be evaluated numerically or sometimes analytically
via Corollary 6.7. Therefore, we can calculate (6.2), which allows us to see how the
expected latency varies as we change the scheduling parameters such as p, r and l, a topic
we investigate in the next section.

� 6.3.2 Scheduling examples

In this section we calculate the trade-off of latency and resource usage for two canonical
execution time distributions, Pareto distribution and Shifted Exponential distribution (cf.
(6.13) for definition). The former has a heavy (polynomially decaying) tail while the latter
an exponentially decaying tail. We focus on the cloud user cost defined in (5.4) as the
calculation of crowd sourcing cost is straightforward.

For both execution time distributions, we analyze the cases of relaunching and no
relaunching, and show that for the Pareto distribution, relaunching leads to smaller latency
in certain regime, while for the Shifted Exponential distribution, no relaunching always
achieves smaller latency.

Pareto execution time

A Pareto distribution Pareto (α, xm) satisfies

F (x;α, xm) ,

{
1−

(
xm
x

)α
x ≥ xm,

0 x < xm.
(6.11)

Pareto distribution is a heavy-tail distribution, which corresponds well to both the task
size and task execution time distribution in data centers [43,72].

First from (6.11) we obtain

xp̄ = F−1
X (1− p;α, xm) = xmp

−1/α,

Regarding T (2), when there is relaunching, by Lemma B.3, Y ∼ Pareto ((r + 1)α, xm), and

E [Ypn:pn] = Γ

(
1− 1

(r + 1)α

)
(pn)

1
(r+1)αxm.
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Figure 6-2: Comparison of the expected latency E [T ] obtained from simulation (points)
and analytical calculations (lines) for the Pareto distribution Pareto (2, 2).

When there is no relaunching, Y = min {Pareto (α, xp̄)− xp̄,Pareto (rα, xm)}, which leads
to

E [Ypn:pn] = Γ

(
1− 1

(r + 1)α

)
ãpn,

and derivations in Appendix B.3.1 shows that ãn satisfies

n1/α =
1

xrmxp̄
(xp̄ã

r
n + ãr+1

n ). (6.12)

Fig. 6-2 compares the latency obtained from simulation and analytical calculations for
Pareto distribution, indicating latency obtained from analytical calculation is very close
to the actual performance for n ≥ 100, especially for the case with relaunching (l = 0).

Remark 6.3 (Job size in data centers). Analysis of real-world trace data shows that
it is common for a job to contain hundreds or even thousands of tasks [72].

With the cloud computing cost in Appendix B.3.1, we plot the latency and cloud user
cost as p changes in Fig. 6-3, leading the following observation.

Observation 6.11. A small amount of replication can reduce latency significantly, and
may lead to lower cloud user cost than the case of no replication.

From Fig. 6-4 we draw the following two observations.
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Figure 6-3: Expected latency and cloud user cost for a Pareto execution time distribution
Pareto (2, 2), given n = 400.

Observation 6.12. For a given n, when p is small enough, relaunching leads to lower
latency than no relaunching.

Observation 6.13. With relaunching, earlier replication (larger p) may not reduce la-
tency, while without relaunching, earlier replication always reduces latency.
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Figure 6-4: The expected latency for relaunching and no relaunching (n = 1000) for the
Pareto distribution Pareto (2, 2).

Relaunching too early could increase latency, because in this case it may terminate tasks
that are run by “normal” nodes, which betrays the purpose of terminating a “straggler”
and launching the task on another normal node.

Finally, in the cloud computing scenario, we can characterize the trade-off between
latency and cost shown in Fig. 6-5, leading the observations below.

Observation 6.14. In general, no relaunching achieves better trade-off between latency
and cloud user cost due to the huge cloud user cost overhead in relaunching.

Observation 6.15. The optimal different replication level r depends on the latency re-
quirement.

For example, to achieve latency of 8, r = 3 with no relaunching results in the lowest
cloud user cost, while to achieve latency 10, r = 2 is more preferable in terms of cloud
user cost.

Shifted Exponential execution time

While the exponential distribution has been popular in various latency analysis, especially
queuing theory, it may not be suitable for modeling the execution time of a task, as a task
seldom finishes instantaneously, and usually it is lower bounded by a constant delay due
to machine start-up or task initialization. Therefore, we model the execution time of tasks
as the sum of a constant xm and an exponential random variable with parameter λ, and
we called this distribution a Shifted Exponential distribution SExp (xm, λ), which has c.d.f.

F (x) = 1− e−λ(x−xm), x ≥ xm. (6.13)

87



CHAPTER 6. DESIGN AND ANALYSIS OF FORKING POLICIES

3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

E [Ccloud]

E [T ]

r = 0 & relaunch

r = 1 & relaunch

r = 1 no relaunch

r = 2 & relaunch

r = 2 no relaunch

Figure 6-5: The trade-off between expected latency E [T ] and normalized expected cloud
user cost E [Ccloud] /n for Pareto (2, 2) and n = 400, by varying p in the range of [0, 1].

The Exponential distribution Exp (λ) ∼ SExp (0, λ).

Let E1, E2, . . . , En
i.i.d.∼ Exp (λ), it is not hard to see that

Xk:n = xm + Ek:n.

From (6.13), we derive

xp̄ = xm +
ln(1/p)

λ
. (6.14)

When there is relaunching, by Lemma B.1, Y = X1:r+1 = xm + Exp ((r + 1)λ), and

E [Y ] = xm +
1

(r + 1)λ
(6.15)

E [Ypn:pn] = xm +
ln(pn) + γEM

(r + 1)λ
(6.16)

When there is no relaunching, Y = min {Exp (λ) , xm + Exp (rλ)}, and the calculations in
Appendix B.3.2 show that

E [Y ] =
1

λ

(
1− e−λxm

)
+

1

(r + 1)λ
e−λrxm (6.17)

E [Ypn:pn] =
r

r + 1
xm +

ln(pn) + γEM

λ(r + 1)
. (6.18)
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Figure 6-6: Comparison of the expected latency E [T ] obtained from simulation (points)
and analytical calculations (lines) for the Shifted Exponential distribution SExp (1, 1).

Fig. 6-6 compares the latency obtained from simulation and analytical calculations for
the Shifted Exponential distribution, which again demonstrates the effectiveness of the
asymptotic theory.

For the Shifted Exponential execution time distribution, we draw the following obser-
vations.

Observation 6.16. Given the same p and r, relaunching leads to larger latency than no
relaunching.

Observation 6.16 follows directly after comparing (6.16) and (6.18).

Observation 6.17. Replicating earlier (larger p) leads to smaller latency, relaunch or
not.

Following (6.14), (6.16) and (6.18),

E [T ] = E
[
T (1)

]
+ E

[
T (2)

]

=
2r + l

r + l
xm +

1

(r + 1)λ
(lnn− r ln p+ γEM) ,

indicating the larger p, the smaller the latency.

Observation 6.18. Given r, replicating later (smaller p) reduces cloud user cost.
The derivations in Appendix B.3.2 show that

λE [Ccloud] =

{
n+ pn

[
λxm + r

(
1− e−λxm

)]
l = 1

n+ pnλ(r + 2)xm l = 0
.
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Figure 6-7: The trade-off between expected latency E [T ] and normalized expected cloud
user cost E [Ccloud] /n for SExp (1, 1) and n = 400, by varying p in the range of [0.05, 0.95].

Therefore, when xm > 0, using small p, which corresponds to less replication reduces cloud
user cost. However, when xm = 0, λE [Ccloud] = n, which is independent of p and r.

Remark 6.4. When xm = 0, we can see that replicating jobs does not increase cloud user
cost, but reduces latency, which suggests we should replicate as many copies as possible.
This counter-intuitive result suggests that the Exponential distribution is indeed a poor
model of the execution time distribution.

Observation 6.19. If xm > β∗/λ, where β∗ > 0 is the solution to

βr + β − r + re−β = 0,

then relaunching leads to strictly larger latency and cloud computing cost than no relaunch-
ing.

In particular, β∗ < 1, hence if xm ≥ 1/λ, then no relaunching achieves better trade-off
between latency and cost than relaunching.

The detailed derivations for Observation 6.19 is shown in Appendix B.3.2, and Fig. 6-7
illustrates the trade-off for execution time distribution SExp (1, 1) at n = 400.

� 6.4 Multi-fork policy analysis

In Section 6.3, the single-fork policy replicate tasks at one time instant to speed up the
computation, i.e., fork once. In this section, we consider the policy that forks multiple
times, i.e., the multi-fork policy.
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Definition 6.3 (Multi-fork scheduling policy). Given the execute time distribution
FX , p = [p1, p2, . . . , pk], r = [r1, r2, . . . , rk], and l = [l1, l2, . . . , lk], where p1 > p2 > . . . pk,
a multi-fork scheduling policy πMF (n,p, r, l;FX) replicates each the remaining tasks ri
times when there are npi unique tasks still unfinished, and takes the result from the earliest
finished copy.

Similar to the single-fork policy, when replicating an unfinished task, the scheduler can
choose to either terminate the current copy of unfinished task and relaunch a new copy
(relaunch, li = 0), or let the current copy continue to run (no relaunch, li = 1).

Our key result is that a multi-fork policy can be decomposed as multiple single-fork
policies, leading to the performance characterization in Theorem 6.20.

Theorem 6.20 (Multi-fork policy performance). The latency and cost of a multi-
fork scheduling policy πMF (n,p, r, l;FX) satisfy

T (πMF (n,p, r, l;FX)) =

k∑

i=1

T (1) (πSF (nqi−1, qi, ri, li;FX(i)))

+ T (2) (πSF (nqk, qk, rk, lk;FX(k)))

C (πMF (n,p, r, l;FX)) =

k∑

i=1

C(1) (πSF (nqi−1, qi, ri, li;FX(i)))

+ C(2) (πSF (nqk, qk, rk, lk;FX(k)))

where T (1) (·), T (2) (·), C(1) (·) and C(2) (·) are introduced in Section 6.1,

FX(i) =

{
FX i = 1

g (FX(i−1) , ri, li) 2 ≤ i ≤ k
,

qi =

{
1 i = 0

pi/qi−1 1 ≤ i ≤ k
.

Proof. Given a multi-fork scheduling policy πMF (n,p, r, l;FX), after the first fork, we can
view the remaining problem as a new scheduling problem with np1 unique tasks, each with
execution time distribution FX(2) = g(FX , r1, l1). Applying this recursively after each fork
completes the proof.

We leave the topic of using Theorem 6.20 to design multi-fork policies that achieve
better trade-off between latency and resource usage for future exploration.

� 6.5 Concluding remarks

In this chapter we characterize the performance trade-offs of single-fork and multi-fork po-
lices, which allow system designers or users to follow the procedure outlined in Section 5.5
to obtain scheduling policies.

The accuracy of our performance characterizations depends crucially on the accuracy
of the execution time distribution FX , especially its tail behavior, because the latency
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of the second stage of a single-fork policy largely depends on the tail behavior of the
execution time distribution. Therefore, for estimation purpose, it is important to capture
the anomalies in task duration data.

In practice, we may have more knowledge about the states of different computing
nodes and hence may model the execution time of the same task on different computing
node differently. For example, faster computing nodes may correspond to execution time
distribution with a smaller mean. While this makes the analysis more involved, as long as
the execution time for the same task are independent among different machines, replication
continues to help and our framework remains useful.

Finally, we note that while a single-fork policy introduced in this chapter is a joint
scheduling policy (cf.Section 5.3.2 for definition), it is possible to obtain a corresponding
disjoint policy by setting the replication time of tasks to xp̄

1. By the “simplifying assump-
tion” discussion in Section 6.3.1, the performance trade-off obtained from this disjoint
policy is essentially the same as its joint counterpart.

1We only replicate if a task if not finished by then.
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Chapter 7

Design and analysis of general scheduling policies

The investigation in Chapter 6, based on continuous execution time distribution, shows
when and how task replication can be helpful for certain classes of practically useful
scheduling policies. However, its implications are limited to the class of execution time
distributions that can be analytical characterized and specific classes of scheduling policies,
such as the single-fork and multi-fork policies. To remove these two limitations, in this
chapter we investigate the scheduling problem with discrete execution time distributions,
which allows more flexible modeling of the execution time distribution, and the finiteness
in the support of the distribution allows analysis of more general scheduling policies.

The rest of the chapter is organized as follows. We first discuss the scenarios where
discrete execution time distribution naturally occurs in Section 7.1. Based on this, we
formulate the optimal scheduling problem as an optimization problem in Section 7.2.
However, solving this optimization problem is not straightforward, and we tackle this op-
timization problem by narrowing down the search space, solving for special yet important
cases, and proposing heuristic algorithms. We first analyze the simple yet important case
of scheduling a single task optimally in Section 7.3, then proceed to scheduling multiple
tasks in Section 7.4.

We focus on the analysis of the cloud user cost in this chapter as the analysis for crowd
sourcing cost is straightforward, and use C to denote Ccloud.

� 7.1 Discrete execution time distribution

In this chapter we model the execution time X as a discrete random variable, which
corresponds to a p.m.f. PX , i.e.,

X = αi w.p. pi, 1 ≤ i ≤ l, (7.1)

or, PX(αi) = pi. (7.2)

where pi ∈ [0, 1] and
∑l

i=1 pi = 1.
This modeling is motivated by the following observations:

1. In practice we often estimate the execution time distribution based on log files or
traces, and it is sometimes more convenient to estimate a discrete distribution than
a continuous one. For example, a simple estimation could be a histogram of the past
execution time spans with certain bin size (e.g., 10 seconds), or from the percentile
execution time table such as Table 5.1, as shown in Fig. 7-1a.

2. Given a continuous execution time X, we can use a discrete execution time X̂ to
derive the lower bound of its performance by setting the c.d.f. of X̂ to be the upper
envelope of F̄X (·). An example of for X ∼ Pareto (2, 2) is shown in Fig. 7-1b.
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(a) A discrete execution time distribution esti-
mated from Table 5.1.
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(b) Pareto distribution (dashed line) and its dis-
crete approximation (solid line).

Figure 7-1: Examples for discrete execution time distribution.

3. A computing node may have multiple states (e.g., idle, with concurrent tasks, strag-
glers, . . . ), and in each state i the execution time may be tightly concentrated around
some value αi. Then the execution time distribution for this node over all states is
simply (7.2) with probability pi being the probability that it is in state i.

In particular, in this chapter we will frequently specialize our results to the case that PX
is a bimodal distribution, which corresponds to non-zero probability at two time spans,
i.e.,

X =

{
α1 w.p. p1,

α2 w.p. p2 = 1− p1.
(7.3)

The bimodal distribution is observed in real systems, as pointed out by [73, Observation 3],
which states task duration distributions are bimodal, with different task types having dif-
ferent task duration distributions. This model captures the phenomena of “stragglers” [36],
which indicates the majority of computing nodes in the data centers finish execution in
the normal time span, while a small fraction of the nodes takes exceedingly long to com-
plete execution due to malfunctioning of one or multiple part of the data center, such as
network congestion, software bugs, bad disk, etc.. In the bimodal distribution (7.3), α1

can be viewed as the time span that a normal node takes to execute a task, and α2 the
time span that a straggler takes.

� 7.2 Scheduling objective function

In addition to the trade-off between latency and costs, which are introduced in Sec-
tion 5.3.3, we define the scheduling objective function, which is simply a convex com-
bination of latency and cost:

Jλ(π) = λE [T (π)] + (1− λ)E [C(π)] , (7.4)

where 0 ≤ λ ≤ 1 reflects the relative importance of latency. As we shall see, sometimes
this metric is more convenient as it allows us to define a optimal policy.
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Definition 7.1 (Optimal and suboptimal policies). Given λ, then the corresponding
optimal scheduling policy π∗ is

π∗ = arg min
π

Jλ(π).

A scheduling policy π is said to be suboptimal if there exists another policy π′ such
that Jλ(π′) < Jλ(π) for any λ ∈ [0, 1].

Note that there may exist policies that are neither optimal nor suboptimal.
If we can find the optimal policy π∗ for any given λ, then we can schedule tasks opti-

mally. However, this optimization problem is not straightforward because the scheduling
objective function is non-convex, and the search space is infinite-dimensional, as we can
launch any number of computing nodes at any time.

� 7.3 Scheduling a single task

In this section we present our results regarding the optimal scheduling for a single task.
While appearing simplistic, single-task scheduling is practically useful if we cannot divide
a job into multiple parallel tasks. In addition, it is impossible to scheduling multiple tasks
optimally if we do not even understand how to schedule a single task optimally.

We defer all proofs to Appendix B.4.
In the single-task setting, the disjoint and joint scheduling policies defined in Sec-

tion 5.3.2 are equivalent. Therefore, for the single-task scenario, we can focus on the
disjoint scheduling policy without any loss of generality, and represent a scheduling policy
by its starting time vectors, i.e.,

π = t = [t1, t2, . . . , tm],

where tj is the time that the task starts on computing node j.

Remark 7.1. Note that the starting time vector [t1, . . . , tm] is equivalent to [t1, t2, . . . ,
tm, αl, . . . , αl] as tasks scheduled to start at αl will never be launched. We use these two
representations interchangeably in this chapter.

The performance metrics defined in Section 5.3.3, latency T and cloud computing cost
Ccloud, can now be expressed as

T (π) = min
1≤j≤m

tj +Xj , (7.5)

C(π) , Ccloud(π) =
m∑

j=1

|T − tj |+ , (7.6)

where Xj
i.i.d.∼ PX .

� 7.3.1 Computing the trade-off between latency and cost

In this section we provide methods to compute the trade-off between expected latency
E [T ] and expected cost E [C], which is equivalent to solving the optimization problem
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in Section 7.2. Our results reduce the search space of the optimal starting time vector
from infinite-dimensional to a finite set, making the computation of the trade-off between
latency and cost feasible.

Given the execution time distribution PX and a starting time vector t = [t1, . . . , tm],
we first show an important property of E [T (t)] and E [C(t)] in Theorem 7.1.

Theorem 7.1. E [T (t)] and E [C(t)] are piecewise linear functions of t.

A further refinement of Theorem 7.1 leads to Theorem 7.2, which indicates the optimal
starting time vector t ∈ [0, αl]

m is located in a finite set, which is composed by a con-
strained integer combination of the support of PX .

Theorem 7.2. The starting time vector t = [t1, . . . , tm] that minimizes Jλ satisfies that

t∗j ∈ Vm, (7.7)

where Vm is a finite set such that

Vm ,



v : v =

l∑

j=1

αjwj , 0 ≤ v ≤ αl,
l∑

j=1

|wj | ≤ m,wj ∈ Z



 . (7.8)

Theorem 7.2 directly leads to Corollary 7.3.

Corollary 7.3. If p.m.f. PX satisfies that αj = kjα, 1 ≤ j ≤ l, kj ∈ Z+, then the optimal
starting time vector t∗ satisfies

tj ∈ Vm ⊂ {0, α, 2α, . . . , αl = kmα} ,

where |Vm| ≤ km + 1.

Given Theorem 7.2, we can calculate the E [T ] and E [C] for all starting time vectors with
length m that satisfy (7.7), then discard suboptimal ones, leading to the E [T ]-E [C] trade-
off as shown in Fig. 7-2, which are plotted for the following two sample execution times
with m = 3.

X =





4 w.p. 0.6

8 w.p. 0.3

20 w.p. 0.1

, (7.9)

X ′ =

{
6 w.p. 0.8

20 w.p. 0.2
. (7.10)

� 7.3.2 Heuristic policy search algorithm

While Theorem 7.2 reduces the search space of the optimal scheduling policy, the number
of policies to evaluate is still exponential in m. In this section we introduce a heuristic
single-task scheduling algorithm in Algorithm 3 that has much lower complexity.
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Figure 7-2: Examples of the E [T ]-E [C] trade-off region with m = 3. The label of each
point indicates the starting time vector, and the region is defined by two piecewise linear
segments marked by squares and dots respectively.

We first show that the optimal choice of the (i + 1)-th element of the starting time
vector is dependent on the starting times before it, i.e., t1, t2, . . . , ti, via Theorem 7.4. In
particular, the optimal value belongs to a set U that we called corner points that is defined
below in Definition 7.2.

Definition 7.2 (Corner points). Given t = [t1, t2, . . . , ti], let

U1 , {0, α1, . . . , αl} ,

Ui+1(t1, . . . , ti) ,
⋃

u∈Ui(t1,...,ti−1)

{
u+ b1ti − b2αj : 0 ≤ u+ b1ti − b2αj ≤ αl,

1 ≤ j ≤ l, b1, b2 ∈ {0, 1}
}
, i ≥ 1,

and we called Ui+1 the corner points given t.

Theorem 7.4. Given t = [t1, t2, . . . , ti] and the corner points Ui+1(t), then the optimal
scheduling policy with i+ 1 starting times

t′ = [t1, t2, . . . , ti, ti+1]

satisfies ti+1 ∈ Ui+1.

Finally, we have the following simple observation that, again, help to reduce the search
space of scheduling policy.

Lemma 7.5. Starting a computing node at any time αl − α1 ≤ t ≤ αl is suboptimal.
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Figure 7-3: Cost comparisons between the heuristic scheduling policies obtained via Algo-
rithm 3 and optimal scheduling policy obtained via Theorem 7.2, given the starting time
vector has length m = 4, for different execution time distributions.

With these insights, we propose a heuristic algorithm that builds the starting time
vector [t1, t2, · · · tm] iteratively, with the constraint that ti’s are in non-decreasing order.
Given a starting time vector [t1, · · · ti], this algorithm compares the policies [t1, · · · ti, ti+1]
where ti+1 can be one of first k corner points in U(t1, . . . , ti), and choose the policy ti+1

that leads to the minimum cost. As we increase k, the algorithm compares a larger space
of policies and hence achieves a lower cost, as illustrated by the comparisons in Fig. 7-3
for execution times defined in both (7.9) and (7.10) . The example also demonstrates
that for the given p.m.f.s, a small k is sufficient to achieve near-optimal trade-off.

Algorithm 3 k-step heuristic algorithm for single-task scheduling

Initialize t1 = 0 and t = [t1]
for i = 2, . . .m do

U+(t)← sorted elements of U(t) which are ≥ ti−1

π0 ← [t, αl], policy that keeps the computing node unused
for j = 1, . . . , k do

πj ← [t, U+(t)[j]]
end for
j∗ ← arg minj∈0,1,···k Jλ(πj)
ti ← U+(t)[j] and t← [t, ti]

end for

� 7.3.3 Bimodal execution time distribution

While results in Section 7.3.1 characterize the E [T ]-E [C] trade-off and suggest good
scheduling policies, a sharper characterization on when and why task replication helps
is useful. In this section, we analyze the special yet important case of bimodal execution
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t2 = 0

t2 = α1

t2 = α2 − α1t2 = α2

E [T ]

E [C]

Figure 7-4: The E [T ]-E [C] trade-off for bimodal execution with two computing nodes,
which corresponds to starting time vector t = [t1 = 0, t2].

time distribution (cf. (7.3)), and present a complete characterization of the scenario of
scheduling with two computing nodes (m = 2). Then for the case of general number of
nodes, we analyze the specific strategy that we only introduce task replication at a single
time instant, which is similar to the single-fork policy defined in Section 6.1.

Scheduling with two computing nodes

We present results for scheduling one task with two nodes, which is the simplest non-
trivial example. The scheduling policy can be represented as the vector t = [t1 = 0, t2],
and we provide a complete characterization of the E [T ]-E [C] trade-off in Fig. 7-4, leading
to Theorem 7.6.

Theorem 7.6. Given PX is a bimodal distribution and at most two nodes, the optimal
policy t = [t1 = 0, t2] satisfies t2 ∈ {0, α1, α2}.

In Theorem 7.7, we provide further insights by showing the suboptimality (cf. Defini-
tion 7.1) of certain scheduling policies as the execution time distribution PX varies, which
is characterized by the ratio of its fast and slow response time, α1/α2, and the probability
that it finishes at its fast response time, p1.

Theorem 7.7. Given the bimodal execution time and two computing nodes,

(a) [0, α2 − α1] is always suboptimal;

(b) [0, α1] is suboptimal if α1
α2
> p1

1+p1
;

(c) [0, α2] is suboptimal if α1
α2
< 2p1−1

4p1−1 ;
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R1

R2 R3 2p1 − 1

4p1 − 1

p1
1 + p1

α1

α2

p1

1/2 10

1/2

1/3

1

Figure 7-5: Bimodal two computing node. R1 is the range of parameters that t = [0, α1]
is strictly suboptimal, R3 is the range t = [0, α2] is strictly suboptimal, which means no
task replication is strictly suboptimal.

Given λ, we can find the optimal policy by comparing the ratio 1−λ
λ to the thresholds,

τ1 =
α1p1(3− 2p1) + α2(1− p1)(1− 2p1)

(α2 − α1)(1− p1)p1
(7.11)

τ2 =
1 + 2p1(1− p1)

p1(1− p1)
(7.12)

τ3 =
α1(4p1 − 1) + α2(1− 2p1)

α2 − 2α1)p1
(7.13)

(d) If α1
α2
> p1

1+p1
, then policy [0, α2] is optimal if 1−λ

λ ≤ τ1, and [0, 0] is optimal otherwise.

(e) If 2p1−1
4p1−1 ≤ α1

α2
≤ p1

1+p1
, then policy [0, α1] is optimal if τ3 <

1−λ
λ ≤ τ2, policy [0, α2] is

optimal if 1−λ
λ ≤ τ3, and [0, 0] is optimal otherwise.

(f) If α1
α2
< 2p1−1

4p1−1 , then policy [0, α1] is optimal if 1−λ
λ ≤ τ2, and [0, 0] is optimal otherwise.

Theorem 7.7 is summarized in Fig. 7-5.

Scheduling with multiple computing nodes

For scheduling with m computing nodes, an analysis on general scheduling policy is in-
volved and hence we restrict our attention to the special case of scheduling with replication
at only one time instant, which we called the one-time replication policy. We show that
even this simple strategy often improves the trade-off between E [T ] and E [C].

Theorem 7.8 (Optimal one-time replication scheduling). Given bimodal execution
time, m computing nodes, and the following form of starting time vector,

t = [t1 = 0, t2 = 0, . . . , tm−d = 0, tm−d+1 = t, . . . , tm = t],
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one-time replication (m = 3)

one-time replication (m = 4)

optimal with m = 4

Figure 7-6: The performance of one-time replication polices for the execution time X ′ in
(7.10) with m = 2, 3, 4. The optimal policy with m = 4 is obtained from Theorem 7.2.

which assumes after t1 = 0, we only introduce task replication once at time t, then the
optimal scheduling policy satisfies

t = α1,

d =





0 when λ̄/(λ+mλ̄) < pm−1
2 p1

m− 1 when λ̄/(λ+mλ̄) > p1

dae − 1, or dae otherwise

,

where

a = m− 1− log(1− λ)− log [λ+m(1− λ)]− log p1

log(1− p1)
.

As we can see from Fig. 7-6, in this example, replication helps unless λ, the relative
importance of latency, is really small, as m ≥ 2 results in higher costs than the case of no
replication. In addition, more computing nodes is useful only when λ is large.

Given a bimodal distribution and m, we can compute the optimal d and hence the
optimal cost according to Theorem 7.8. Fig. 7-6 shows that, for the given execution
time defined in (7.10), the one-time replication policy with the appropriate number of
m coincides with the optimal scheduling policy obtained from Theorem 7.2, i.e., it is
possible to achieve optimal performance with replication at one time instant. However,
we note this may not be true for other execution time distributions, such as (7.9), because
Fig. 7-2a suggests for a certain λ, [0, 8, 12] would the optimal starting time vector, which
corresponds to replication at two time instants.
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� 7.4 Scheduling multiple tasks

In this section we investigate the scheduling of multiple tasks. We first show that it
is crucial to take the interaction of different tasks into account in Theorem 7.9, then
extend our algorithm in Algorithm 3 for multi-task scheduling. All proofs are deferred to
Appendix B.5.

Theorem 7.9 (Separation is suboptimal). Given m tasks, applying the optimal one-
task scheduling policy for each of them individually is suboptimal.

Given the complexity of searching for optimal scheduling policy in the single-task case,
we again aim to search for scheduling policy via a heuristic algorithm. In particular, we
aim to find a good policy that takes the interaction among tasks into account. To achieve
this, we apply Algorithm 3, but using the cost function for the multi-task case, where
T and C are defined in (5.3) and (5.4) respectively. This search procedure produces a
starting time vector t = [t1, t2, . . . , tm], and at each time ti, we launch an additional copy
for each of the unfinished tasks.

Fig. 7-7 shows an example for the execution time in (7.9). The scheduling policy with
replication reduces Jλ, especially when λ is large. We also see that as the number of tasks
n increases, the cost Jλ increases as the impact of the slowest task gets more severe. Fig. 7-
7 also indicates that when λ is not too big, it may be beneficial to introduce replication
at multiple time instants, as in this case, we are more concerned with cloud computing
cost Ccloud and hence introducing replication gradually is preferred. By contrast, when
λ is close to 1, a good scheduling policy should introduce replication early to cut down
latency as soon as possible.

Our proposed policy via searching algorithm is a disjoint scheduling policy (cf. Sec-
tion 5.3.2 for definitions). One may extend it by running the searching algorithm at each
time instant. For example, at time t = 0 we obtain the starting time vector t(0). At time
t = α1 we can re-run the search algorithm given the number of unfinished tasks and obtain
an updated starting time vector t(1), etc.. This policy is a joint scheduling policy and is
likely to achieve better performance than its disjoint counterpart.

� 7.5 Concluding Remarks

In this chapter we analyze scheduling policy when tasks share a discrete execution time
distribution. For the case of scheduling a single task, we obtain results that enable the
computation of the trade-off between expected latency E [T ] and expected cost E [C],
which essentially enables us to schedule a single task optimally. In addition, we propose a
heuristic scheduling policy with lower computation complexity and achieve near-optimal
costs for the demonstrated examples.

While in single-task scheduling we only need to consider disjoint scheduling policies,
in multi-task scheduling we also need to consider joint scheduling policies. This category
of policies is more involved to analyze as the time to replicate additional copies of a task
could be a random variable that depends on the completion of other tasks. We first show
that in general disjoint scheduling policies are suboptimal, and then extend the heuristic
scheduling policy for single-task scheduling to the multi-task case. It would be of great
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Figure 7-7: Cost of the heuristic scheduling policy in Algorithm 3 for execution time X
in (7.9) with k = 2. The starting time vectors for λ = 0.2, 0.4, 0.6 and 0.8 are labeled in
the plots. The optimal disjoint policy is search from all possible starting time vectors that
satisfy (7.8).

interest to gain more understanding on the performance limit of joint scheduling policies,
which may lead to better scheduling policy designs.

In addition better understanding of scheduling policies, considering a richer set of
scheduler actions may further improve performance, as mentioned in Section 5.3.2. In
particular, the action TerminateNode can be used to terminate a specific copy of a task
preemptively, which may help to achieve better trade-off between latency and resource
usage.
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Part III

Approximate sorting with noisy
comparisons
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Chapter 8

The approximate sorting problem with noisy

comparisons

Far better an approximate answer to the right question, which is
often vague, than an exact answer to the wrong question, which can
always be made precise.

John Tukey, The future of data analysis
Annals of Mathematical Statistics, 1962

In this part of the thesis we investigate the problem of approximate sorting with
noisy comparisons. While similar problems have appeared in a variety of contexts, our
investigation is motivated by the application of crowd-based ranking, which suggests that
the number of comparisons is an important performance metric, leading to the problem of
minimum-comparison approximate sorting. In this chapter we first describe the motivating
application in Section 8.1, then define the problem of minimum-comparison approximate
sorting in Section 8.2, and finally discuss the related existing works in Section 8.3. In
Chapter 9 we present a rate-distortion theory of permutation spaces, a theory that is of
interest in its own and provides an information theoretic lower bound for the approximate
sorting problem with both noiseless and noisy comparisons.

� 8.1 Motivating application: crowd-based ranking

In this section we first introduce the notion of crowdsourcing, and then describe crowd-
based ranking.

Crowdsourcing is a process that distributes tasks to a group of people, with the ob-
jective to achieve some common goal. It exists in many forms. Explicitly, there exist
crowdsourcing platforms such as Amazon Mechanical Turk or oDesk, where requesters
post simple tasks at various prices and workers solve these tasks for some amount of com-
pensation. Implicitly, crowdsourcing occurs in many group decision making processes,
such as movie ranking and the college admission process, where the opinions of a group of
people are polled to reach a decision. Many examples of crowdsourcing, especially online
ones, share the common characteristic that can be summarized in the following question:

How can we solve a complex problem by gathering inaccurate answers to a list
of simple questions?

In this part of the thesis we aim to answer the above question in the context of
crowd-based ranking. Ranking plays an important role in many aspects of our life, as it
summarizes detailed features of a set of objects to a sequence of numbers, and makes it
possible to evaluate complex information straightforwardly. In crowd-based ranking, the
opinions of experts/users are queried and aggregated to produce a ranking. One of the
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most salient example may be the Internet Movie Database (IMDb.com), where users provide
ratings for movies they have watched, and these information is aggregated to produce the
top 250 movies of all time, an extremely difficult task for most users to accomplish on
their own.

In crowd-based ranking, the queries are usually in two formats: ratings and compar-
isons. In ranking via ratings, users assign numerical value (rating score) to each item, as
in the Internet Movie Database example, while in ranking via comparisons, users provide
comparison results for a pair of items in terms of preference. Again, this may happen
either explicitly or implicitly, in which binary actions such as clicking a link or voting up
or down can be used as the comparison outcomes.

In this part of the thesis we focus on the problem of ranking via comparisons. Noting
that one key feature of crowd-based ranking is that query cost is significant, because human
queries are expensive and/or time consuming. In addition, inaccuracies are inherent in
the crowdsourcing process, so we should aim to rank approximately rather than exactly.
Based on these observations, we aim to analyze approximate ranking algorithms that
used the minimum number of comparisons, leading the problem of minimum-comparisons
approximate sorting defined in Section 8.2.

� 8.2 Minimum-comparison approximate sorting

In this section we first introduce the notation and facts used in this part of the thesis
in Section 8.2.1, then setup the minimum-comparison approximate sorting problem in
Section 8.2.2.

� 8.2.1 Notation and facts

In addition to the notation introduced in Section 1.1, we introduce the following notation
in this part of the thesis.

Let Sn denote the symmetric group of n elements. We write the elements of Sn as
arrays of natural numbers with values ranging from 1, . . . , n and every value occurring
only once in the array. For example, σ = [3, 4, 1, 2, 5] ∈ S5. This is also known as the
vector notation for permutations. For a permutation σ, we denote its permutation inverse
by σ−1, where σ−1(x) = i when σ(i) = x, and σ(i) is the i-th element in array σ. For
example, the permutation inverse of σ = [2, 5, 4, 3, 1] is σ−1 = [5, 1, 4, 3, 2]. We denote the
identity permutation by Id, i.e., Id , [1, 2, . . . , n]. Given a metric d : Sn×Sn → R+ ∪{0},
we define a permutation space X (Sn, d).

We let [a : b] , {a, a+ 1, . . . , b− 1, b} for any two integers a and b.
We introduce Stirling’s approximation, a frequently-used technique: for m ∈ Z+,

(m
e

)m
e

1
12m+1 <

m!√
2πm

<
(m
e

)m
e

1
12m . (8.1)

� 8.2.2 Problem definition

Given a set of items V = {v1, v2, . . . , vn} such that

vσ−1(1) � vσ−1(2) � . . . � vσ−1(n),
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where a � b indicates a is preferred to b, then we say the permutation σ is the true ranking
of these list of items, where σ(i) provides the rank of item i, and σ−1(r) provides the index
of the item with rank r.

If an algorithm produces a ranking π based on f(n) pairwise comparisons of items in
V, we say this algorithm is an approximate sorting algorithm with query complexity f(n)
and distortion d(σ, π), where d(·, ·) is some distance measure on the symmetric group Sn.

We consider two types of comparisons, noiseless comparison and noisy comparison.
Given a true ranking σ, for any a, b ∈ Sn, a noiseless comparison satisfy

cmp (a, b) =

{
1 a�σ b
0 a≺σ b

,

where �σ indicates preference based on the ranking σ. A noisy comparison produces a
random outcome, which equals the noiseless comparison with probability 1− ε, i.e.,

c̃mp (a, b) =

{
Bern (1− ε) a�σ b
Bern (ε) a≺σ b

, (8.2)

Remark 8.1. In certain applications, the error probability of the comparison may depends
on the two items being compared, and we can adopt ranking models such as the Thurstone
model [74] to model the error probability in pairwise comparisons.

While algorithms for approximate sorting with both noiseless and noisy comparisons
have been investigated, the fundamental performance limits of approximate sorting algo-
rithms are not established. In Chapter 9, our analysis via rate distortion theory establishes
the lower bounds of query complexity for approximate sorting with both noiseless compar-
isons and noisy comparisons, and is shown to be tight for the noiseless case. Furthermore,
as our lower bound results indicate, for the number of comparisons in approximate sort-
ing, asymptotic analysis in terms of the Big-O notation is often too coarse because the
constant term in front of the dominant factor matters. We called an approximate sorting
algorithm that achieves the optimal constant constant optimal.

� 8.3 Related works and problems

Sorting is a rich subject, and in this section we describe various existing work that relate
to the problem of approximate sorting with noisy comparisons.

As discussed below, while algorithms for minimum comparison sorting problem have
been proposed, the problem of minimum-comparison approximate sorting problem with
noisy comparisons is still open.

Minimum comparison sorting

Regular sorting with minimum number of comparisons has been studied in [75, Chapter
5.3]. A few well-known sorting algorithms, including merge sort, tree selection sort and
binary insertion sort, are minimum comparison sorting algorithms.
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Sorting under partial information and partial order production

The problem of partial order production aims to “arrange the elements in an unknown
totally ordered set V into a target partially ordered set, by comparing a minimum number
of pairs in V” [76]. It was first proposed by [77], then [78] provides an information-theoretic
lower bound in terms of log n!/e(P ), where P is the target partially ordered set (poset) and
e(P ) is the number of linear extensions of P . For this problem, a solution that achieves
the information-theoretic lower bound was proposed in [76].

While the output of a partial order production algorithm is a poset, this poset cor-
responds to at least one linear extension, i.e., a fully ordered set that corresponds to a
permutation. Therefore, any partial order production algorithm can be converted to an
algorithm for the approximate sorting problem defined in Section 8.2.

The problem of sorting under partial information sorts a set of elements with some
given outcomes of comparisons between some pairs of the elements, which can be seen as
a complement of the problem of partial order production. It is an important problem that
been well investigated in [79,80].

Partial sorting with noiseless comparisons

The problem of partial sorting is first proposed in [81]. Given a set of n elements V and
a set of indices I ⊂ {1, 2, . . . , n}, a partial sorting algorithm aims to arrange the elements
into a list [v1, v2, . . . , vn] such that for any i ∈ I, all elements with indices j < i are no
greater than vi, and all elements with indices j′ > i are no smaller than vi. A partial
sorting algorithm essentially selects all elements with ranks in the set I, and hence is also
called multiple selection. A lower bound on the query complexity for the multiple selection
problem is proposed in [82], and the algorithm proposed by [83] achieves this lower bound.

In addition, [84] points out that multiple selection can be seen a special case of the
problem of partial order production. Therefore, a variety of results on partial order pro-
duction could be useful for the problem of partial sorting as well.

While it is not straightforward to extend the minimum comparison sorting algorithms
above to partial sorting as they all build a global ordering from a local ordering and
any local disorder leads to error propagation, it is straightforward to extend quicksort to
partial sorting. Indeed, simply by stopping at a proper partition size, quicksort achieves
D = O

(
n1+δ

)
with 1.39(1− δ)n log2 n+ o (n log2 n) comparisons on average. The analysis

follows from [75, Chapter 5.2.2] or [85]. A more general version of the algorithm is discussed
in [86].

Finally, the soft heap idea [87,88] can also be applied to partial sorting.
It is not hard to see that given the same distortion, the set of partial sorting algorithms

is a subset of approximate sorting algorithms defined in Section 8.2, because approximate
sorting algorithms do not require their outputs to be in the form specified by for the
partial sorting problem.

Sorting and selection with noisy comparisons

There have been a variety of work on algorithms based on noisy comparisons.
Most of work adopts the “probably correct” performance measure, aiming to produce

a correct output with 1− q probability, which can be translated to approximate sorting in
terms of average distortion. In [89], the problems of sorting and k-selection of n elements
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with noisy comparisons and correct answer probability requirement at least 1 − q are
investigated. The main idea is to repeat comparisons appropriately, and the analysis is
based on analyzing a random walk on a binary search tree. In particular, for sorting,
Θ (n log n/q) noisy comparisons are needed, and for k-selection, Θ (n log (m/q)), where
m = min {k, n− k} noisy comparisons are needed.

Another line of work focuses on sorting under different performance measures and/or
constraints. In [90], the problem of noisy sorting without resampling (i.e., repeating is
not helpful) is considered. An algorithm that finds the maximum likelihood order with
O (n log n) sample complexity is provided, and with high probability achieves `1 distortion
Θ (n). In [91], a variety of noisy comparison-based problems are investigated, again with
the no resampling constraint. Relevant results include finding the maximum of n numbers
in O(n) time and approximately sort n numbers in O

(
n2
)

time such that each number’s
position deviates from its true rank by at most O (log n) positions.

To our best knowledge, all existing work on noisy comparisons algorithms adopt the
common asymptotic complexity analysis measure and hence do not take the constant in
front of the asymptotic term into account.

Sorting with distributional models

In classical sorting research it is implicitly assumed that all sorting outcome are equally
likely, i.e., the permutation that corresponding to the ordering are uniformly distributed
over the Sn. However, in some applications, one may have prior knowledge about the
distribution of the ordering, such as the Mallows model [92], a popular distributional
model in ranking applications. The learning of Mallows model in [93] can be viewed as
sorting under the Mallows distributional model.

Note that sorting with partial information can be viewed as sorting with a distribu-
tional model, where the distribution is uniform on a subset of Sn that agrees with the
partial information. Therefore, sorting with distributional model is a more general formu-
lation than sorting with partial information.

Information theoretic lower bound for algorithms

Using information-theoretic tools to derive lower bounds for algorithm complexity is a
well-known technique. For the multiple-selection problem, [82] analyzes the information
theoretic bound and claims the information-theoretic bound is “usually very weak”. Later,
results in [94] and [95] shows that the information-theoretic bound is tight up to a mul-
tiplicative constant for merging and sorting under partial information respectively (see
also [96]).

Rank aggregation

Rank aggregation [97] investigates the problem of combining rankings of subsets of data
into a ranking of the whole set of the data, where comparison-based ranking can be seen
as a special case (each comparison produces a ranking of subset of size 2). Some recent
work include the algorithm for aggregating (possibly conflicting) pairwise preferences to
get an overall rank with minimum conflicts in [98], and rank aggregation with partial data
in [99].
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Most of rank aggregation investigations assumes a given set of rankings. One exception
is [100], where the problem of active ranking via pairwise comparison is investigated.
However, the problem setup is constrained as they assume all the objects can be embedded
into a d-dimensional Euclidean space and the overall rankings is determined by the objects’
relative distances to a common reference point in Rd.
Learning to rank

Learning to rank is an important problem in search and information retrieval [101–105].
While the problem here is also finding a permutation based on some input (possibly
pairwise comparisons), a loss function between the learned permutation and the true
permutation is assumed. In the sorting setup, no such loss function is available, making
the problem more difficult.
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Chapter 9

A rate-distortion theory for permutation spaces

� 9.1 Introduction

As discussed in Chapter 8, in this part we are interested in the problem of minimum
comparison approximate sorting algorithms with noisy comparisons, and in this chapter
we derive the fundamental limits on the query complexity via analyzing the trade-off
between rate and distortion for permutation spaces.

In addition to analyzing the query complexity of approximate sorting, a rate-distortion
theory for permutation spaces also provides the fundamental limits on the lossy compres-
sion of permutations, which is of interest to the application of storing ranking data. In
applications such as recommendation systems, it may be necessary to store the ranking
of all users in the system, and hence the storage efficiency of ranking data is of interest.
Furthermore, in many cases a rough knowledge of the ranking (e.g., finding one of the
top five elements instead of the top element) is sufficient. Because a ranking of n items
can be represented as a permutation of 1 to n, storing a ranking is equivalent to storing
a permutation. This poses the question of the number of bits needed for permutation
storage when a certain amount distortion can be tolerated.

Remark 9.1 (Compression is easier than sorting). It is worth noting that compres-
sion is easier than sorting, in the sense that every comparison-based sorting algorithm
corresponds to a compression scheme of the permutation space, while the reverse does not
hold in general. In particular, the string of bits that represent comparison outcomes in
any deterministic (approximate) sorting algorithm corresponds to a (lossy) representation
of the permutation.

Besides the above applications, the rate-distortion theory on permutation spaces is of
technical interest on its own because the permutation space does not possess the product
structure that a discrete memoryless source induces.

With the above motivations, we consider the rather fundamental problem of lossy
compression in permutation spaces in this chapter, which provide insights on both ap-
proximate sorting and lossy compression of ranking data. Following the classical rate-
distortion setup, we aim to answer the question that given a distortion measure d(·, ·) and
the amount of distortion D allowed, what is the minimum number of the bits needed to
describe the permutations?

The analysis of the lossy compression problem depends on the source distribution and
the distortion measure. We mainly concern with the permutation spaces with a uniform
distribution, and consider different distortion measures based on four distances in the
permutation spaces: the Kendall tau distance, Spearman’s footrule, Chebyshev distance
and inversion-`1 distance. As we shall see in Section 9.2, each of these distortion measures
has its own operational meaning that may be useful in different applications.
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Besides characterizing the trade-off between rate and distortion, we also show that
under the uniform distribution over the permutation space, there are close relationships
between all the distortion measures of interest in this chapter. We use these relations to
establish the equivalence of source codes in permutation spaces with different distortion
measures. Our results indicate that, while these distance measures usually have different
intended applications, an optimal coding scheme for one distortion measure is effectively
optimal for other distortion measures. For each distortion measure, we provide simple
and constructive achievability schemes, leading to explicit source code designs with low
complexity.

Finally, we turn our attention to non-uniform distribution over the permutation spaces,
as in some application we may have prior knowledge about the permutation data, which
can be captured in a non-uniform distribution. There are a variety of distributional models,
such as the Bradley-Terry model [106], the Luce-Plackett model [107,108], and the Mallows
model [92] that rise in different contexts. Among these, we choose the Mallows model due
to its richness and applicability in various ranking applications [93, 109,110]. We analyze
the lossless and lossy compression of the permutation space under the Mallows model and
with the Kendall tau distance as the distortion measure, and characterize its entropy and
end points of its rate-distortion function.

Our analysis provides an information-theoretic lower bound on query complexity for
all approximate sorting algorithms that achieve a certain distortion, while as discussed in
Section 8.3, the lower bound in [82] only holds for the class of partial sorting algorithms
that achieve the same distortion. The multiple selection algorithm proposed in [83] turns
out to be optimal for the general approximate sorting problem as well and hence our
information-theoretic lower bound is tight.

The rest of the chapter is organized as follows. We first present the problem for-
mulation in Section 9.2. We then show that there exist close relationships between the
distortion measures of interest in this chapter in Section 9.3. In Section 9.4, we derive
the rate-distortion functions for different permutation spaces. In Section 9.5, we provide
achievability schemes for different permutation spaces under different regimes. After that,
we turn our attention to non-uniform distributional model over the permutation space
and analyze the lossless and lossy compression for Mallows model in Section 9.6. Finally
we apply our rate-distortion theory results and provide lower bounds on the query com-
plexity of approximate sorting with both noiseless and noisy comparisons in Section 9.7
and conclude in Section 9.8.

� 9.2 Problem formulation

In this section we discuss aspects of the problem formulation of the rate-distortion problem
for permutation spaces. We first introduce the distortions of interest in Section 9.2.1, and
then provide a mathematical formulation of the rate-distortion problem in Section 9.2.2.

� 9.2.1 Distortion measures

For distortion measures, it is natural to use distance measures on the permutation set
Sn, and there exist many possibilities [111]. In this chapter we choose a few distortion
measures of interest in a variety of application settings, including Spearman’s footrule (`1
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distance between two permutation vectors), Chebyshev distance (`∞ distance between two
permutation vectors), Kendall tau distance and the inversion-`1 distance.

Given a list of items with values v1, v2, . . . , vn such that vσ−1(1) � vσ−1(2) � . . . �
vσ−1(n), where a � b indicates a is preferred to b, then we say the permutation σ is the
ranking of these list of items, where σ(i) provides the rank of item i, and σ−1(r) provides
the index of the item with rank r. Note that sorting via pairwise comparisons is simply the
procedure of rearranging v1, v2, . . . , vn to vσ−1(1), vσ−1(2), . . . , vσ−1(n) based on preferences
from pairwise comparisons.

Given two rankings σ1 and σ2, we measure the total deviation of ranking and maximum
deviation of ranking by Spearman’s footrule and Chebyshev distance respectively.

Definition 9.1 (Spearman’s footrule). Given two permutations σ1, σ2 ∈ Sn, the Spear-
man’s footrule between σ1 and σ2 is

d`1 (σ1, σ2) , ‖σ1 − σ2‖1 =
n∑

i=1

|σ1(i)− σ2(i)| .

Definition 9.2 (Chebyshev distance). Given two permutations σ1, σ2 ∈ Sn, the Cheby-
shev distance between σ1 and σ2 is

d`∞ (σ1, σ2) , ‖σ1 − σ2‖∞ = max
1≤i≤n

|σ1(i)− σ2(i)| .

The Spearman’s footrule in Sn is upper bounded by
⌊
n2/2

⌋
(cf. Lemma C.6) and the

Chebyshev distance in Sn is upper bounded by n− 1.
Given two lists of items with ranking σ1 and σ2, let π1 , σ−1

1 and π2 , σ−1
2 , then we

define the number of pairwise adjacent swaps on π1 that changes the ranking of π1 to the
ranking of π2 as the Kendall tau distance.

Definition 9.3 (Kendall tau distance). The Kendall tau distance dτ (σ1, σ2) from one
permutation σ1 to another permutation σ2 is defined as the minimum number of transpo-
sitions of pairwise adjacent elements required to change σ1 into σ2.

The Kendall tau distance is upper bounded by
(
n
2

)
.

Example 9.1 (Kendall tau distance). The Kendall tau distance for σ1 = [1, 5, 4, 2, 3]
and σ2 = [3, 4, 5, 1, 2] is dτ (σ1, σ2) = 7, as one needs at least 7 transpositions of pairwise
adjacent elements to change σ1 to σ2. For example,

σ1 = [1, 5, 4, 2, 3]

→ [1, 5, 4, 3, 2]→ [1, 5, 3, 4, 2]→ [1, 3, 5, 4, 2]

→ [3, 1, 5, 4, 2]→ [3, 5, 1, 4, 2]→ [3, 5, 4, 1, 2]

→ [3, 4, 5, 1, 2] = σ2.

Being a popular global measure of disarray in statistics, Kendall tau distance also has a
natural connection to sorting algorithms. In particular, given a list of items with values
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v1, v2, . . . , vn such that vσ−1(1) � vσ−1(2) � . . . � vσ−1(n), dτ
(
σ−1, Id

)
is the number of

swaps needed to sort this list of items in a bubble-sort algorithm [75].
Finally, we introduce a distortion measure based on the concept of inversion vector,

another measure of the order-ness of a permutation.

Definition 9.4 (inversion, inversion vector). An inversion in a permutation σ ∈ Sn
is a pair (σ(i), σ(j)) such that i < j and σ(i) > σ(j).

We use In(σ) to denote the total number of inversions in σ ∈ Sn, and

Kn(k) , |{σ ∈ Sn : In(σ) = k}| (9.1)

to denote the number of permutations with k inversions.
Denote i′ = σ(i) and j′ = σ(j), then i = σ−1(i′) and j = σ−1(j′), and thus i < j and

σ(i) > σ(j) is equivalent to σ−1(i′) < σ−1(j′) and i′ > j′.
A permutation σ ∈ Sn is associated with an inversion vector xσ ∈ Gn , [0 : 1] × [0 :

2]× · · · × [0 : n− 1], where xσ(i′), 1 ≤ i′ ≤ n− 1 is the number of inversions in σ in which
i′ + 1 is the first element. Mathematically, for i′ = 2, . . . , n,

xσ(i′ − 1) =
∣∣{j′ ∈ [n] : j′ < i′, σ−1(j′) > σ−1(i′)

}∣∣ .

Let π , σ−1, then the inversion vector of π, xπ, measures the deviation of ranking σ from
Id. In particular, note that

xπ (k) =
∣∣{j′ ∈ [n] : j′ < k, π−1(j′) > π−1(k)

}∣∣
=
∣∣{j′ ∈ [n] : j′ < k, σ(j′) > σ(k)

}∣∣

indicates the number of elements that have larger ranks and smaller item indices than
that of the element with index k. In particular, the rank of the element with index n is
n− xπ (n− 1).

Example 9.2. Given 5 items such that v4 � v1 � v2 � v5 � v3, then the inverse of the
ranking permutation is π = [4, 1, 2, 5, 3], with inversion vector xπ = [0, 0, 3, 1]. Therefore,
the rank of the v5 is n− xπ (n− 1) = 5− 1 = 4.

It is well known that mapping from Sn to Gn is one-to-one and straightforward [75].
With these, we define the inversion-`1 distance.

Definition 9.5 (inversion-`1 distance). Given two permutations σ1, σ2 ∈ Sn, we de-
fine the inversion-`1 distance, `1 distance of two inversion vectors, as

dx,`1 (σ1, σ2) ,
n−1∑

i=1

|xσ1(i)− xσ2(i)|. (9.2)

Example 9.3 (inversion-`1 distance). The inversion vector for permutation σ1 = [1, 5, 4, 2, 3]
is xσ1 = [0, 0, 2, 3], as the inversions are (4, 2), (4, 3), (5, 4), (5, 2), (5, 3). The inversion vec-
tor for permutation σ2 = [3, 4, 5, 1, 2] is xσ2 = [0, 2, 2, 2], as the inversions are (3, 1), (3, 2), (4, 1),
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(4, 2), (5, 1), (5, 2). Therefore,

dx,`1 (σ1, σ2) = d`1 ([0, 0, 2, 3], [0, 2, 2, 2]) = 3.

As we shall see in Section 9.3, all these distortion measures are related to each other.
While the operational significance of the inversion-`1 distance may not be as clear as
other distortion measures, some of its properties provide useful insights in the analysis of
other distortion measures.

Remark 9.2. While Spearman’s footrule and Chebyshev distance operates on the ranking
domain, inversion vector and Kendall tau distance could be seen to operate on the inverse
of the ranking domain.

Remark 9.3. The `1, `∞ distortion measures above can be readily generalized to weighted
versions to incorporate different emphasis on different parts of the ranking.

In particular, using a weighted version that only puts non-zero weight to the first k
components of the permutation vector corresponds to the case that we only the distortion
of the top-k items (top-k selection problem).

� 9.2.2 Rate-distortion problems

With the distortions defined in Section 9.2.1, in this section we define the rate-distortion
problems under both average-case distortion and worst-case distortion.

Definition 9.6 (Codebook for average-case distortion). An (n,Dn) source code C̄n
⊆ Sn for X (Sn, d) under average-case distortion is a set of permutations such that for
a σ that is drawn from Sn according to a distribution P on Sn, there exists an encoding
mapping fn : Sn → C̄n that

EP [d(fn(σ), σ)] ≤ Dn. (9.3)

The mapping fn : Sn → C̄n can be assumed to satisfy

fn(σ) = arg min
σ′∈C̄n

d(σ′, σ)

for any σ ∈ Sn.

Definition 9.7 (Codebook for worst-case distortion). The codebook for permutations
under worst-case distortion can be defined analogously to Definition 9.6, except (9.3) now
becomes

max
σ∈Sn

d(fn(σ), σ) ≤ D. (9.4)

We use Ĉn to denote a (n,Dn) source code under the worst-case distortion.

In this chapter we mostly focus on the case P is uniformly distributed over the sym-
metric group Sn, except in Section 9.6, where a distribution rising from the Mallows model
is used.
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Definition 9.8 (Rate function). Given a source code Cn and a distortion Dn, let A(n,Dn)
be the minimum size of Cn, and we define the minimal rate for distortions Dn as

R(Dn) ,
logA(n,Dn)

log n!
.

In particular, we denote the minimum rate of the codebook under average-case and worst-
case distortions by R̄ (Dn) and R̂ (Dn) respectively.

Similar to the classical rate-distortion setup, we are interested in deriving the trade-
off between distortion level Dn and the rate R(Dn) as n → ∞. In this work we show
that for the distortions d(·, ·) and the sequences of distortions {Dn, n ∈ Z+} of interest,
limn→∞R(Dn) exists.

For Kendall tau distance and inversion-`1 distance, a close observation shows that in
regimes such as Dn = O(n) and Dn = Θ

(
n2
)
, limn→∞R(Dn) = 1 and limn→∞R(Dn) = 0

respectively. In these two regimes, the trade-off between rate and distortion is really shown
in the higher order terms in logA(n,Dn), i.e.,

r(Dn) , logA(n,Dn)− log n! lim
n→∞

R(Dn). (9.5)

For convenience, we categorize the distortion Dn under Kendall tau distance or inversion-
`1 distance into three regimes. We say D is small when D = Θ (n), moderate when
D = Θ

(
n1+δ

)
, 0 < δ < 1, and large when D = Θ

(
n2
)

1.
We choose to omit the higher order term analysis for X (Sn, d`1) because its analysis

is essentially the same as X (Sn, dτ ), and the analysis for X (Sn, d`∞) is still open.
Note that the higher order terms r(Dn) may behave differently under average and

worst-case distortions, and in this chapter we restrict our attention to the worst-case
distortion.

� 9.3 Relationships between distortion measures

In this section we show all four distortion measures defined in Section 9.2.1 are closely
related to each other, which is summarized in (9.6) and(9.7). These relationships implies
a variety of equivalence in the lossy compression schemes, which we exploit to derive the
rate-distortion functions in Section 9.4.

For any σ1 ∈ Sn and σ2 is randomly uniformly chosen from Sn,

nd`∞ (σ1, σ2) ≥ d`1 (σ1, σ2) ≥ dτ
(
σ−1

1 , σ−1
2

)
≥ dx,`1

(
σ−1

1 , σ−1
2

)
, (9.6)

nd`∞ (σ1, σ2)
w.h.p.
<
∝ d`1 (σ1, σ2) <

∝ dτ
(
σ−1

1 , σ−1
2

) w.h.p.
<
∝ dx,`1

(
σ−1

1 , σ−1
2

)
, (9.7)

where x <∝ y indicates x < c · y for some constant c > 0, and
w.h.p.
<∝ indicates <∝ with high

probability.

1In the small distortion region with R(Dn) = 1, r(Dn) is negative while in the large distortion region
where R(Dn) = 0, r(Dn) is positive.
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The following sections provide detailed arguments for (9.6) and(9.7) by analyzing the
relationship between different pairs of distortion measures.

Spearman’s footrule and Chebyshev distance

Let σ1 and σ2 be any permutations in Sn, then by definition,

d`1 (σ1, σ2) ≤ n · d`∞ (σ1, σ2) , (9.8)

and additionally, a scaled Chebyshev distance lower bounds the Spearman’s footrule with
high probability.

Theorem 9.1. For any π ∈ Sn, let σ be a permutation chosen uniformly from Sn, then

P [c1 · n · d`∞ (π, σ) ≤ d`1 (π, σ)] ≥ 1−O (1/n) (9.9)

for any positive constant c1 < 1/3.

Proof. See Appendix C.2.1.

Spearman’s footrule and Kendall tau distance

The following theorem is a well-known result on the relationship between Kendall tau
distance and `1 distance of permutation vectors.

Theorem 9.2 ( [112]). Let σ1 and σ2 be any permutations in Sn, then

d`1(σ1, σ2)/2 ≤ dτ (σ−1
1 , σ−1

2 ) ≤ d`1(σ1, σ2). (9.10)

inversion-`1 distance and Kendall tau distance

We show that the inversion-`1 distance and the Kendall tau distance are closely related
in Theorem 9.3 and Theorem 9.4, which helps to establish the equivalence of the rate-
distortion problem later.

Theorem 9.3. Let σ1 and σ2 be any permutations in Sn, then for n ≥ 2,

1

n− 1
dτ (σ1, σ2) ≤ dx,`1 (xσ1 ,xσ2) ≤ dτ (σ1, σ2). (9.11)

Proof. See Appendix C.2.2.

Remark 9.4. The lower and upper bounds in Theorem 9.3 are tight in the sense that
there exist permutations σ1 and σ2 that satisfy the equality in either lower or upper bound.
For equality in lower bound, when n = 2m, let

σ1 = [1, 3, 5, . . . , 2m− 3, 2m− 1, 2m, 2m− 2, . . . , 6, 4, 2],

σ2 = [2, 4, 6, . . . , 2m− 2, 2m, 2m− 1, 2m− 3, . . . , 5, 3, 1],

then dτ (σ1, σ2) = n(n− 1)/2 and dx,`1 (σ1, σ2) = n/2, as

xσ1 = [0, 0, 1, 1, 2, 2, . . . ,m− 2,m− 2,m− 1,m− 1],

xσ2 = [0, 1, 1, 2, 2, 3, . . . ,m− 2,m− 1,m− 1,m].
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For equality in upper bound, note that dτ (Id, σ) = dx,`1 (Id, σ).

Theorem 9.3 shows that in general dτ (σ1, σ2) is not a good approximation to dx,`1 (σ1, σ2)
due to the 1/(n−1) factor. However, Theorem 9.4 shows that Kendall tau distance scaled
by a constant actually provides a lower bound to the inversion-`1 distance with high
probability.

Theorem 9.4. For any π ∈ Sn, let σ be a permutation chosen uniformly from Sn, then

P [c2 · dτ (π, σ) ≤ dx,`1 (π, σ)] ≥ 1−O (1/n) (9.12)

for any positive constant c2 < 1/2.

Proof. See Appendix C.2.3.

� 9.4 Trade-offs between rate and distortion

In this section we present the main results of this chapter—the trade-offs between rate and
distortion in permutation spaces. Throughout this section we assume the permutations
are uniformly distributed over Sn.

We first present Theorem 9.5, which shows the equivalence of lossy source codes under
different distortion measures. This indicates that for all the distortion measures in this
chapter, the lossy compression scheme for one measure preserves distortion under other
measures under average-case distortion, and hence all compression schemes can be used
interchangeably, given appropriate transformation of the permutation representation and
scaling the distortion. Then with these equivalence relationships, Theorem 9.6 shows that
all distortion measures in this chapter essentially share the same rate distortion function.
Last, in Section 9.4.2, we present results on the trade-off between rate and distortion for
X (Sn, dτ ) and X (Sn, dx,`1) when the distortion leads to degenerate rates R(Dn) = 0 and
R(Dn) = 1.

� 9.4.1 Rate distortion functions

Theorem 9.5 (Equivalence of lossy source codes). Under both average-case and worst-
case distortion, a following source code on the left hand side implies a source code on the
right hand side:

1. (n,Dn/n) source code for X (Sn, d`∞) ⇒ (n,Dn) source code for X (Sn, d`1),

2. (n,Dn) source code for X (Sn, d`1) ⇒ (n,Dn) source code for X (Sn, dτ ),

3. (n,Dn) source code for X (Sn, dτ ) ⇒ (n, 2Dn) source code for X (Sn, d`1),

4. (n,Dn) source code for X (Sn, dτ ) ⇒ (n,Dn) source code for X (Sn, dx,`1).

Furthermore, under average-case distortion, a following source code on the left hand side
implies a source code on the right hand side:

5. (n,Dn) source code for X (Sn, d`1)⇒ (n,Dn/(nc1)+O (1)) source code for X (Sn, d`∞)
for any c1 < 1/3,
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6. (n,Dn) source code for X (Sn, dx,`1)⇒ (n,Dn/c2 +O (n)) source code for X (Sn, dτ )
for any c2 < 1/2.

The relationship between source codes is summarized in Fig. 9-1.
The proof is based on the relationships between various distortion measures investi-

gated in Section 9.3 and we defer the details in Appendix C.3.1.
As we show below, for the uniform distribution on Sn, the rate-distortion function is

the same for both average- and worst-case, apart from the terms that are asymptotically
negligible.

Theorem 9.6 (Rate distortion functions). For permutation spaces X (Sn, dx,`1),
X (Sn, dτ ), and X (Sn, d`1),

R̄(Dn) = R̂(Dn) (9.13)

=

{
1 if Dn = O (n) ,

1− δ if Dn = Θ
(
n1+δ

)
, 0 < δ ≤ 1.

For the permutation space X (Sn, d`∞),

R̄(Dn) = R̂(Dn) (9.14)

=

{
1 if Dn = O (1) ,

1− δ if Dn = Θ
(
nδ
)
, 0 < δ ≤ 1.

The rate-distortion functions for all these spaces are summarized in Fig. 9-2.

Proof sketch. The achievability comes from the compression schemes proposed in Sec-
tion 9.5. The converse for X (Sn, dx,`1) can be shown via the geometry of permutation
spaces in Appendix C.1. Then because a D-ball in X (Sn, dx,`1) has the largest volume
(cf. (9.6)), a converse for other permutation spaces can be inferred.

The rest of the proof follows from the simple fact that an achievability scheme for the
worst-case distortion is also an achievability scheme for the average-case distortion, and a
converse for the average-case distortion is also a converse for the worst-case distortion.

We present the detailed proof in Appendix C.3.2.

Because the rate distortion functions under average-case and worst-case distortion
coincide, if we require

lim
n→∞

P [d(fn(σ), σ) > Dn] = 0 (9.15)

d`∞ d`1 dτ dx,`1

(
n, Dn

n

)
(n,Dn) (n,Dn)

(n, nc1Dn)
(
n, Dn

2

)
(n, c2Dn)

Figure 9-1: Relationship between source codes. An arrow indicates a source code in one
space implies a source in another space, where the solid arrow indicates for both average-
case and worst-case distortions, and the dashed arrow indicates for average-case only.

121



CHAPTER 9. A RATE-DISTORTION THEORY FOR PERMUTATION SPACES

0 1
0

1

D =

{
Θ
(
n1+δ

)
for dx,`1 , dτ , d`1

Θ
(
nδ
)

for d`∞

D =

{
O (n) for dx,`1 , dτ , d`1
O (1) for d`∞

δ

R̄(Dn) = R̂(Dn)

Figure 9-2: Rate-distortion function for permutation spaces X (Sn, dx,`1), X (Sn, dτ ),
X (Sn, d`1), and X (Sn, d`∞).

instead of E [d(fn(σ), σ)] ≤ Dn in Definition 9.6, then the asymptotic rate-distortion
trade-off remains the same.

Given the number of elements n and a distortion level D, we can compute the num-
ber of bits needed by first computing δ via the asymptotic relationship logD/ log n − 1
(for permutation spaces X (Sn, dx,`1), X (Sn, dτ ), and X (Sn, d`1)) or logD/ log n (for per-
mutation space X (Sn, d`∞)), then obtain the number of bits needed via (1 − δ)n log2 n.

� 9.4.2 Higher order term analysis

As mentioned in Section 9.2, for small- and large-distortion regimes it is of interest to
understand the trade-off between rate and distortion via the higher order term defined
in (9.5). In this section we present the analysis for both regimes in permutation spaces
X (Sn, dτ ) and X (Sn, dx,`1).

Theorem 9.7. In the permutation space X (Sn, dτ ), when Dn = anδ, 0 < δ ≤ 1, for the
worst-case distortion, rs

τ (Dn) ≤ r(Dn) ≤ rs
τ (Dn), where

rs
τ (Dn) =

{
−a(1− δ)nδ log n+O

(
nδ
)
, 0 < δ < 1

−n
[
log (1+a)1+a

aa

]
+ o (n) , δ = 1

, (9.16)

rs
τ (Dn) =

{
−nδ a log 2

2 +O (1) , 0 < a < 1

−nδ logb2ac!
b2ac +O (1) , a ≥ 1

. (9.17)

When Dn = bn2, 0 < b ≤ 1/2, rl
τ (Dn) ≤ r(Dn) ≤ rl

τ (Dn), where

rl
τ (Dn) = max

{
0, n log 1/

(
2be2

)}
, (9.18)

rl
τ (Dn) = n log d1/(2b)e+O (log n) . (9.19)
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Remark 9.5. Some of the results above for X (Sn, dτ ), since their first appearances in the
conference version [113], have been improved subsequently by [114]. More specifically, for
the small distortion regime, [114, Lemma 7, Lemma 10] provides an improved upper bound
and show that rs

τ (Dn) = rs
τ (Dn) in (9.16). For the large distortion regime, [114, Lemma

11] shows a lower bound that is tighter than (9.18).

Theorem 9.8. In the permutation space X (Sn, dx,`1), when Dn = anδ, 0 < δ ≤ 1,

rs
x,`1(Dn) ≤ r(Dn) ≤ rs

x,`1
(Dn),

where rs
x,`1

(Dn) = rs
τ (Dn)− nδ log 2 (cf. (9.16)) and

rx,`1(Dn) =

{
−
⌊
nδ
⌋

log(2a− 1) a > 1

−
⌈
anδ
⌉

log 3 0 < a ≤ 1
.

When Dn = bn2, 0 < b ≤ 1/2,

rl
x,`1(Dn) ≤ r(Dn) ≤ rl

x,`1
(Dn),

where rl
x,`1

(Dn) = rl
τ (Dn) (cf. (9.18)) and rl

x,`1
(Dn) = n log d1/(4b)e+O (1) .

Proof. The achievability are presented in Section 9.5.4 and Section 9.5.5. For converse,
note that

|Cn|N(Dn) ≥ n!,

where N(Dn) is the maximum of the size of balls with radius Dn in the corresponding
permutation space (cf. Appendix C.1 for definitions), then a lower bound on |Cn| follows
from the upper bound on N(Dn) in Lemma C.3 and Lemma C.5. We omit the details as
it is analogous to the proof of Theorem 9.6.

The bounds to r(Dn) of both Kendall tau distance and inversion-`1 distance in both
small and large distortion regimes are shown in Fig. 9-3 and Fig. 9-4.

� 9.5 Compression schemes

Though the permutation space has a complicated structure, in this section we show two
rather straightforward compression schemes, sorting subsequences and component-wise
scalar quantization, are optimal as they achieve the rate-distortion functions in Theo-
rem 9.6. We first describe these two key compression schemes in Section 9.5.1 and Sec-
tion 9.5.2 respectively. Then in Sections 9.5.3 to 9.5.5, we show that by simply applying
these building block algorithms with the proper parameters, we can achieve the corre-
sponding trade-offs between rate and distortion shown in Section 9.4.

The equivalence relationships in Theorem 9.5 suggest these two compression schemes
achieve the same asymptotic performance. In addition, it is not hard to see that in
general sorting subsequences has higher time complexity (e.g., O (n log n) for moderate
distortion regime) than the time complexity of component-wise scalar quantization (e.g.,
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0 1 2 3 4
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linear

logarithmic

a

r(D)

n

dτ upper bound

dx,`1 upper bound

dτ lower bound

dx,`1 lower bound

Figure 9-3: Higher-order trade-off between rate and distortion in the small distortion
regime with D = an. The zig-zag of the dτ upper bound in the range of a ≥ 1 is due to
the flooring in (9.17).

O (n) for moderate distortion regime). However, these two compression schemes operate
on the permutation (or inverse permutation) domain and the inverse vector of permutation
domain respectively, and the time complexity to convert a permutation from its vector
representation to its inversion vector representation is Θ (n log n) [75, Exercise 6 in Section
5.1.1]. Therefore, the cost of representation transformation of permutations should be
taken into account when selecting the compression scheme.

� 9.5.1 Quantization by sorting subsequences

In this section we describe the basic building block for lossy source coding in permutation
space X (Sn, d`1), X (Sn, d`∞) and X (Sn, dτ ): sorting the subsequences, either of the given
permutation σ or of its inverse σ−1. This operation reduces the number of possible permu-
tations and thus the code rate, but introduces distortion. By choosing the proper number
of subsequences with proper lengths, we can achieve the corresponding rate-distortion
function.

More specifically, we first consider the space X (Sn, dτ ) and a code obtained by the
sorting the first k subsequences with length m, 2 ≤ m ≤ n, km ≤ n:

C(k,m, n) , {fk,m(σ) : σ ∈ Sn}
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Figure 9-4: Higher-order trade-off between rate and distortion in the large distortion
regime with D = bn2. The lower bounds for dτ and dx,`1 are identical.

where σ′ = fk,m(σ) satisfies

σ′[im+ 1 : (i+ 1)m] = sort (σ[im+ 1 : (i+ 1)m]) , 0 ≤ i ≤ k,
σ′(j) = σ(j), j > km,

and σ[a : b] is a shorthand notation for the vector [σ(a), σ(a+1), . . . , σ(b)]. This procedure
is illustrated in Fig. 9-5.

Then |C(k,m, n)| = n!/
(
m!k

)
, and we define the (log) size reduction as

∆(k,m) , log
n!

|C(k,m, n)| = k logm!

(a)
= k

[
m log(m/e) +

1

2
logm+O

(
1

m

)]
,

σ1, σ2, . . . , σm σm+1, . . . , σ2m · · · σ(k−1)m+1, . . . , σkm σkm+1, . . . , σn

sort sortsort sort sort keep

Figure 9-5: Quantization by sorting subsequences.
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where (a) follows from Stirling’s approximation in (8.1). Therefore,

∆(k,m) =

{
km logm+ o (km logm) m = Ω (1)

k logm! m = Θ (1)
.

We then calculate the worst-case and average-case distortions:

D̂dτ (k,m) = k
m(m− 1)

2
≤ km2/2 (9.20)

D̄dτ (k,m) = k
m(m− 1)

4
≤ km2/4 (9.21)

where (9.20) is from (C.11).
Similarly, for permutation space X (Sn, d`1) and X (Sn, d`∞), we consider sorting sub-

sequences in the inverse permutation domain, where

C′(k,m, n) ,
{
π−1 : π = fk,m(σ−1), σ ∈ Sn

}
.

It is straightforward that C′(k,m, n) has the same cardinality as C(k,m, n) and hence code
rate reduction ∆(k,m). And the worst-case and average-case distortions satisfy

D̂`∞ (k,m) = m− 1 (9.22)

D̄`∞ (k,m) ≤ m− 1 (9.23)

D̂`1 (k,m) = k
⌊
m2
⌋
/2 ≤ km2/2 (9.24)

D̄`1 (k,m) = k(m2 − 1)/3, (9.25)

where (9.24) comes from Lemma C.6 and (9.25) comes from (C.10).

Remark 9.6. Due to the close relationship between Kendall tau distance and Spearman’s
footrule shown in (9.10), there exists an equivalent construction via the inverse permuta-
tion σ−1 of a permutation σ ∈ Sn:

1. Construct a vector a(σ) such that for 1 ≤ i ≤ k,

a(i) = j if σ−1(i) ∈ [(j − 1)m+ 1, jm], 1 ≤ j ≤ k.

Then a contains exactly m values of integers j.

2. Form a permutation π′ by replacing the length-m subsequence of a that corresponds
to value j by vector [(j − 1)m+ 1, (j − 1)m+ 2, . . . , jm].

It is not hard to see that the set of
{
π′−1

}
forms a codebook with the same size with

distortion upper bounded by km2/2.

� 9.5.2 Component-wise scalar quantization

To compress in the space of X (Sn, dx,`1), component-wise scalar quantization suffices, due
to the product structure of inversion vector space Gn.
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More specifically, to quantize the k points in [0 : k− 1], where k = 2, · · · , n, uniformly
with m points, the maximal distortion is

D̂x,`1 (k,m) = d(k/m− 1) /2e , (9.26)

Conversely, to achieve distortion D̂x,`1 on [0 : k − 1], we need

m =
⌈
k/
(

2D̂x,`1 + 1
)⌉

(9.27)

points.

� 9.5.3 Compression in the moderate distortion regime

In this section we provide compression schemes in the moderate distortion regime, where
for any 0 < δ < 1, Dn = Θ

(
nδ
)

for X (Sn, d`∞) and Dn = Θ
(
n1+δ

)
for X (Sn, d`1),

X (Sn, dτ ) and X (Sn, dx,`1). While Theorem 9.5 indicates a source code for X (Sn, d`∞) can
be transformed into source codes for other spaces under both average-case and worst-case
distortions, we develop explicit compression schemes for each permutation spaces as the
transformation of permutation representations incur additional computational complexity
and hence may not be desirable.

Permutation space X (Sn, d`∞)

Given distortion Dn = Θ
(
nδ
)
, we apply the sorting subsequences scheme in Section 9.5.1

and choose m = Dn + 1, which ensures the maximal distortion is no more than Dn, and
k = bn/mc, which indicates

km = bn/mcm = n+O
(
nδ
)

logm = δ log n+ o (1)

∆(k,m) = km logm+ o (km logm)

= δn log n+O (n) .

Permutation spaces X (Sn, d`1) and X (Sn, dτ )

Given distortionDn = Θ
(
n1+δ

)
, we apply the sorting subsequences scheme in Section 9.5.1

and choose

m = (1/α) bDn/nc ≤ Dn/(nα)

k = bn/mc ,

then

km = n−
∣∣∣O
(
nδ
)∣∣∣

D ≤ αkm2 ≤ Dn

∆(k,m) = δn log n− n log(αe) + o (n) ,
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where the constant α depends on the distortion measure and whether we are considering
worst-case or average-case distortion, as shown in (9.20) and(9.21) and (9.24) and(9.25),
and is summarized in Table 9.1.

Permutation space X (Sn, dx,`1)

Given distortion Dn = Θ
(
n1+δ

)
, we apply the component-wise scalar quantization scheme

in Section 9.5.2 and choose the quantization error of the coordinate with range [0 : k − 1]
D(k) to be

D(k) =
kD

(n+ 1)2
,

then

mk =
⌈
k/
(

2 +D(k) + 1
)⌉

=

⌈
k(n+ 1)2

2kDn + (n+ 1)2

⌉

≤
⌈

(n+ 1)2

2Dn

⌉
,

and the overall distortion and the codebook size satisfy

D =
n∑

k=2

=
(n− 1)(n+ 2)

(n+ 1)2
Dn ≤ Dn,

log |Cn| =
n∑

k=2

logmk ≤ n log

⌈
(n+ 2)2

2Dn

⌉

= (1− δ)n log n+O (n) .

� 9.5.4 Compression in the small distortion regime

In this section we provide compression schemes in the small distortion regime for X (Sn, dτ )
and X (Sn, dx,`1), where for any 0 < δ < 1, Dn = anδ.

Permutation space X (Sn, dτ )

When a ≥ 1, let m = b2ac and k =
⌊
nδ/m

⌋
, then

∆(k,m) = k logm!

≥ (nδ/m− 1) logm! =
log b2ac!
b2ac nδ +O(1).

α average-case worst-case

X (Sn, d`1) 1/3 1/2

X (Sn, dτ ) 1/4 1/2

Table 9.1: The values of α for different compression scenarios.
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And the worst-case distortion is upper bounded by

km2/2 ≤ nδm

2
≤ anδ = Dn.

When 0 < a < 1, let m = 2 and k = bDn/2c, then

∆(k,m) = k logm! =

⌊
Dn

2

⌋
log 2 =

a log 2

2
nδ +O(1).

And the worst-case distortion is no more than km2/2 ≤ Dn.

Permutation space X (Sn, dx,`1)

When a > 1, let

mk =

{
k k ≤ n−

⌊
nδ
⌋

dk/(2a− 1)e k > n−
⌊
nδ
⌋ , k = 2, . . . , n

then the distortion D(k) for each coordinate k satisfies

D(k) ≤
{
a k ≤

⌈
nδ
⌉

0 k >
⌈
nδ
⌉ , k = 2, 3, . . . , n,

and hence overall distortion is
∑n

k=2D
(k) = (

⌊
nδ
⌋
)a ≤ Dn. In addition, the codebook size

∣∣∣Ĉn
∣∣∣ =

n∏

k=2

mk ≤ (1/(2a− 1))bnδc
n∏

k=2

k.

Therefore, log
∣∣∣Ĉn
∣∣∣ ≤ log n!−

⌊
nδ
⌋

log(2a− 1) +O (log n) .

When a ≤ 1, let

mk =

{
dk/3e k < dDne
k k ≥ dDne

, k = 2, . . . , n

and apply uniform quantization on the coordinate k of the inversion vector with mk points,
Then the distortion D(k) for each coordinate k satisfies

D(k) ≤
{

1 k < dDne
0 k ≥ dDne

, k = 2, 3, . . . , n,
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and hence overall distortion is
∑n

k=2D
(k) = dDne − 1 ≤ Dn. In addition, the codebook

size

∣∣∣Ĉn
∣∣∣ =

n∏

k=2

mk ≤
dDne−1∏

k=2

(k + 3)/3
n∏

k=dDne
k

=
1

3dDne−1
dDne (dDne+ 1)(dDne+ 2)

n−1∏

k=5

k.

Therefore, log
∣∣∣Ĉn
∣∣∣ ≤ log n!−

⌈
anδ
⌉

log 3 +O (log n) .

� 9.5.5 Compression in the large distortion regime

In this section we provide compression schemes in the small distortion regime for X (Sn, dτ )
and X (Sn, dx,`1), where for any 0 < δ < 1, Dn = bn2.

Permutation space X (Sn, dτ )

Let k = d1/(2b)e and m = bn/kc, then

∆(k,m) = k logm! ≥ k log(n/k − 1)!

≥ k[n/k log(n/k)− n/k log e+O (log n)]

= n log(n/e)− n log d1/(2b)e+O (log n) .

Hence r̂(Dn) = log n!−∆(k,m) ≤ log d1/(2b)e+O (log n) . And the worst-case distortion
is upper bounded by

km2/2 ≤ n2/(2k) ≤ n2/(1/b) = bn2.

Permutation space X (Sn, dx,`1)

Let mk = dk/(4b(k − 1) + 1)e , k = 2, . . . , n. The distortion D(k) for each coordinate k
satisfies

D(k) =

⌈
1

2

(
k

m
− 1

)⌉
≤ d2b(k − 1)e , k = 2, 3, . . . , n,

and hence overall distortion
∑n

k=2D
(k) ≤ ∑n

k=2 2b(k − 1) + 1 ≤ (b + 1/n)n(n − 1). In
addition, the codebook size

∣∣∣Ĉn
∣∣∣ =

n∏

k=2

mk ≤
n∏

k=2

⌈
k − 1

4b(k − 1)

⌉
≤
⌈

1

4b

⌉n−1

.

Therefore, log
∣∣∣Ĉn
∣∣∣ ≤ n log d1/(4b)e+O (1) .

� 9.6 Compression of permutation space with Mallows model

In this section we depart from the uniform distribution assumption and investigate the
compression of a permutation space with a distributional model—Mallows model [92], a
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distributional model with a wide range of applications such ranking, partial ranking, and
even algorithm analysis (see [115, Section 2e] and the references therein). In the context
of storing user ranking data, Mallows model (or more generally, the mixture of Mallows
model) captures the phenomenon that user rankings are often similar to each other. In
the application of approximate sorting, Mallows model may be used to model our prior
knowledge that permutations that are similar to the reference permutation are more likely.

Definition 9.9 (Mallows model). We denote a Mallows model with reference permu-
tation (mode) π and parameter q as M (π, q), where for each permutation σ ∈ Sn,

P [σ;M (π, q)] =
qdτ (σ,π)

Zq
,

where normalization Zq =
∑

σ∈Sn p
dτ (σ,π). In particular, when the mode π = Id, Zq =

[n]p! [115, (2.9)], where [n]q! is the q-factorial [n]q! = [n]q[n − 1]q . . . [1]q and [n]q is the
q-number

[n]q ,

{
1−qn
1−q q 6= 1

n q = 1
.

As we shall we, the entropy of the permutation space with Mallows model is in general
Θ (n), implying lower space for storage and potentially lower query complexity for sorting.
Since the Mallows model is specified via the Kendall tau distance, we use Kendall tau
distance as the distortion measure, and focus our attention to average-case distortion.

Noting the Kendall tau distance is right-invariant [111], for the purpose of compression,
without loss of generality, we can assume the mode π = Id, and denote the Mallows model
by M (q) ,M (Id, q).

� 9.6.1 Repeated insertion model

The Mallows model can be generated through a process named repeated insertion model
(RIM), which is introduced in [116] and later applied in [93].

Definition 9.10 (Repeated insertion model). Given a reference permutation π ∈ Sn
and a set of insertion probabilities {pi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ i}, RIM generates a new output
σ by repeated inserting π(i) before the j-th element in σ with probability pi,j (when j = i,
we append π(i) at the end of σ).

Remark 9.7. Note that the insertion probabilities at step i is independent of the realiza-
tion of earlier insertions.

If we denote the sampling at each step of the RIM process by ai, 1 ≤ i ≤ n, then a
vector a = [a1, a2, . . . , an] has an one-one correspondence to a permutation, and we called
this vector a an insertion vector.

Lemma 9.9. Given a RIM with reference permutation π = Id and insertion vector aσ,
then the corresponding permutation σ satisfies

aσ (i) = i− x̃σ (i) ,
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where x̃σ is an extended inversion vector that simply prepends a 0 to an inversion vector
xσ:

x̃σ (i) =

{
0 i = 1

xσ (i− 1) 2 ≤ i ≤ n

Therefore,

dτ (σ, Id) = dx,`1 (σ, Id)

=
n∑

i=1

(i− aσ (i)) =

(
n+ 1

2

)
−

n∑

i=1

aσ (i) .

Example 9.4. For n = 4 and reference permutation Id = [1, 2, 3, 4], if a = [1, 1, 1, 1],
then σ = [4, 3, 2, 1], which corresponds to x̃σ = [0, 1, 2, 3].

Theorem 9.10 (Mallows model via RIM [93,116]). Given reference permutation π
and

pi,j =
qi−j

1 + q + . . .+ qi−1
, 1 ≤ j ≤ i ≤ n,

RIM induces the same distribution as the Mallows model M (π, q).

This observation allows us to convert compressing the Mallows model to a standard prob-
lem in source coding.

Theorem 9.11. Compressing a Mallows model is equivalent to compressing a vector
source X = [X1, X2, . . . , Xn], where Xi is a geometric random variable truncated at
i− 1, 1 ≤ i ≤ n, i.e.,

P [Xi = j] =
qj∑i−1
j′=0 q

j′

=
qj(1− q)

1− qi , 0 ≤ j ≤ i− 1

Proof. This follows directly from Lemma 9.9 and Theorem 9.10.

� 9.6.2 Lossless compression

We consider the lossless compression of Mallows model.

Lemma 9.12.
H (M(q)) = H (M(1/q))

Proof. This follows directly from Theorem 9.10.
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Figure 9-6: Entropy of the Mallows model for q = 0.7 and q = 0.9, where the dashed lines
are the coefficients of the linear terms, Hb (q) /(1− q).

Lemma 9.13 (Entropy of Mallows model).

H (M(q)) =
n∑

k=1

H (Xk)

=

{
Hb(q)
1−q n+ g(n, q) q 6= 1

log n! q = 1
,

where Hb (·) is the binary entropy function, g(n, q) = Θ (1), and limq→0 g(n, q) = 0.

The proof is presented in Appendix C.4.1. Fig. 9-6 shows plots of H (M(q)) for different
values of n and q.

Remark 9.8. Doing entropy-coding for each Xi, 1 ≤ i ≤ n is sub-optimal in general as
the overhead is O(1) for each i and hence O(n) for X, which is on the same order of the
entropy H (M(q)) when q 6= 1.

� 9.6.3 Lossy compression

By Theorem 9.11, the lossy compression of Mallows model is equivalent to the lossy
compression of the independent non-identical source X. However, it is unclear whether
an analytical solution of the rate-distortion function for this source can be derived, and
below we try to gain some insights via characterizing the typical set of Mallows model
in Lemma 9.14, which implies that at rate 0, the average-case distortion is Θ (n), while
under the uniform distribution, Theorem 9.6 indicates that it takes n log n + o (n log n)
bits to achieve average-case distortion of Θ (n)!
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Lemma 9.14 (Typical set of Mallows model). There exists c0(q), a constant that
depends on q only, such that for any r0 ≥ c0(q)n,

lim
n→∞

P [Bτ (r0)] = 1.

The proof is presented in Appendix C.4.2.

Remark 9.9. As pointed out in [116], Mallows model is only one specific distributional
model that is induced by RIM. It is possible to generalize our analysis above to other
distributional models that is also induced by RIM.

� 9.7 On the lower bound of query complexity in approxi-
mate sorting

In this section we discuss the implications of our rate-distortion results on the lower bound
of query complexity of approximate sorting.

� 9.7.1 Uniform distributional model

For the case of noiseless comparisons, since each comparison provides at most 1 bit of
information, Theorem 9.5 indicates that to achieve a ranking distortion of Θ

(
n1+δ

)
in

terms of Spearman’s footrule, Kendall tau distance inversion-`1 distance, or Θ
(
nδ
)

in
terms of Chebyshev distance, at least (1− δ)n log n noiseless comparisons are needed.

For the case of noisy comparisons with error probability ε, as each noisy comparison
provides at most 1−Hb (ε) bit of information, at least (1−δ)/(1−Hb (ε))n log n comparisons
are needed.

In both cases, our lower bound results indicate that for approximate sorting, the
constant in front of the n log n term matters.

For the case of noiseless comparisons, it is not hard to see that the multiple selection
algorithm proposed in [83] achieves the above query complexity-distortion trade-off for
all distortion measures of interest, and hence our information-theoretic bound is tight! It
is worth noting that while [82] indeed provides a lower bound on the query complexity
for the multiple selection problem, our results is stronger because we show a lower bound
on the query complexity for all algorithms that achieve a certain distortion level, while
multiple selection is only one particular class of algorithms that achieves the distortion
level.

For the case of noisy comparisons, we can specialize the noisy-comparison based algo-
rithms Section 8.3 to obtain upper bounds. Letting q = nδ−1, the results in [89] indicate
that Θ ((2− δ)n log n) comparisons are sufficient to achieve distortion O

(
n1+δ

)
in terms

of Spearman’s footrule, Kendall tau distance or inversion-`1 distance. The algorithms
in [90, 91] correspond to the small distortion regime D = O (n). However, since none of
these algorithms analyze the constant in front of the n log n term, it is unclear if they
achieve the information theoretic lower-bound and hence the tightness question of the
information-theoretic lower bound in the presence of noisy comparisons remains open.

� 9.7.2 Mallows distributional model

For the Mallows model, our entropy calculation in Lemma 9.13 shows that when q 6= 1,
even for regular (non-approximate) sorting, information theory suggests a lower bound
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of nHb (q)/(1− q) + Θ (1) comparisons, which is much lower than the case of uniform
distribution.

Lemma 9.14 reveals that under the Mallows distribution, any permutations that has
super-linear Kendall tau distance to the mode is highly unlikely, and can be ignored for
the purpose of distortion calculation. Therefore, when sorting under the Mallows model,
we have a much smaller space to search for the true permutation, hinting there may be a
sorting algorithm with query complexity as low as nHb (q)/(1− q).

� 9.8 Concluding remarks

Entropy-based information-theoretic lower bound has been one useful tool in computa-
tional complexity analysis, and our analysis in this chapter demonstrates that besides
entropy, rate-distortion theory is also useful in analyzing the computational complexity
for algorithms, especially approximate algorithms. In particular, our lower bound for the
query complexity of approximate sorting with noiseless comparisons is more general than
existing lower bounds and is tight.

While the optimal algorithm for approximate sorting with noiseless comparisons is
known, constant-optimal or near constant-optimal algorithms for approximate sorting
with noisy comparisons are still open, and is of great practical interest in the context
of crowd-based ranking, as discussed in Section 8.2. This will also help to understand
whether the information theoretic lower bound we developed is tight.

In addition, our results on sorting with the Mallows model indicate that the search
space for the true permutation is much smaller than the uniform case, and hence a lower
query complexity may be achievable. While there exists algorithms [93] for sorting with
the Mallows model, it is not easily amenable to query complexity analysis, and it is
of great interest to investigate sorting algorithms under the Mallows or other common
distributional models.

Finally, as distributional models play an important role in many areas, such as learning
to rank [93] and algorithm analysis [115], a deeper understanding on the rate-distortion
trade-off of non-uniform distributional models would be beneficial.
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Chapter 10

Concluding remarks

While the subject of computing with unreliable resources have been researched in various
contexts, it has some unique characteristics nowadays due to the large scale of modern
computing systems, both posing new challenges and presenting new opportunities. In
this thesis, we investigate the problem of computing with unreliable resources in three
emerging applications, reliable circuit design, scheduling parallel tasks, and crowd-based
ranking. For each of this application, it is necessary to introduce redundancy to obtain
reliable results, and we investigate how to apply redundancy efficiently so that the extra
resource usage does not outweigh the gain in reliability. To tackle this, we propose ana-
lytical frameworks that aim to capture the essence of the systems of interest, and derive
performance trade-offs accordingly. In particular, we show that by taking the statistical
property of unreliability into account, we can introduce redundancy efficiently to increase
fabrication yield, reduce computation latency and improve sorting accuracy.

Besides the three applications in this thesis, the problem of computing with unreliable
resources occurs in many other settings that frameworks proposed in this thesis can be
useful. For example, our model of digital circuit design with faulty components can be
generalized to model a redundant system with redundancy sharing constraints, and this
occur in other contexts such as logistics planning. For another example, our framework for
scheduling parallel tasks can be used to analyze more applications that involve distributed
computation, such as clinical trials and circuit timing analysis. In clinical trials, drugs are
provided to subjects (animals or human beings) for effectiveness test, and the response
time for each subject is stochastic. It is of great economic interest to understand the
trade-off between the latency of a trial and its cost. In another instance, we can view a
circuit as a special case of distributed computing, where each computing node is a logic
unit, such as AND gate and OR gate. Then the delay of each gate is the execution time of
each computing node, and analyze the overall latency of the circuit is the timing closure
problem in statistical timing analysis [117].

In addition to including more applications, it is worthwhile to connect the problem
of computing with unreliable resources to related research areas. For example, with un-
reliable resources, it may be impossible to obtain exact processing and we have to settle
with approximate answers. Therefore, research areas such as approximate computing and
approximate signal processing [118] may offer some meaningful connections.

In summary, computing with unreliable resources is a rich subject, and there are still
many applications to explore and many questions to answer. We hope this thesis provides
some first steps towards an overarching theory on building reliable and efficient large scale
computing systems with unreliable resources!

A journey of a thousand miles begins with a single step.

Lao Tzu

137



138



Appendices

139



140



Appendix A

Derivations and proofs for Part I

� A.1 Results regarding the performance metrics of ADC

Lemma A.1. For an ADC with evenly spaced reproduction values, i.e., ci = (i−1/2)vLSB+
vlo, 1 ≤ i ≤ n + 1, then the maximum quantization error emax, the maximum difference
between an input value vin and its reproduction value, satisfies

emax ≤ (INL + vLSB/2) . (A.1)

In particular, when v1 ≥ vlo + vLSB or vn ≤ vlo + (n− 1)vLSB,

emax = (INL + vLSB/2) . (A.2)

Proof. Without loss of generality, assume vlo = 0, and then ci = (i − 1/2)vLSB, 1 ≤ i ≤
n+ 1. Note that

emax = max
1≤i≤n+1

max {|vi − ci| , |ci − vi−1|}

= max

{
max

1≤i≤n+1
|vi − ci| , max

1≤i≤n+1
|ci − vi−1|

}
,

where

max
1≤i≤n+1

|vi − ci| = max
1≤i≤n+1

|vi − i · vLSB + 0.5vLSB| ,

≤ max
1≤i≤n+1

|vi − i · vLSB|+ 0.5vLSB,

= INL + 0.5vLSB

and similarly,

max
1≤i≤n+1

|ci − vi−1| ≤ max
1≤i≤n+1

|vi−1 − (i− 1)vLSB|+ 0.5vLSB

= INL + 0.5vLSB.

Therefore,

emax ≤ INL + 0.5vLSB.
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To show (A.2), define

INLi , |vi − i · vLSB| , , 1 ≤ i ≤ n
i∗ ∈ arg max

1≤i≤n
INLi.

then INL = INLi∗ . Note that v1 ≥ vlo+vLSB or vn ≤ vlo+(n−1)vLSB means emax ≥ vLSB/2,
and hence

emax = max

{
max

1≤i≤n
|vi − ci| , max

2≤i≤n+1
|ci − vi−1|

}

= max

{
max

1≤i≤n
|vi − ci| , max

1≤i≤n
|ci+1 − vi|

}
.

Also, for 1 ≤ i∗ ≤ n,

if vi∗ − i∗ · vLSB ≥ 0, then |vi∗ − ci∗ | = INL + 0.5vLSB,

if vi∗ − i∗ · vLSB < 0, then |ci∗+1 − vi∗ | = INL + 0.5vLSB.

Therefore,

emax ≥ max {|vi∗ − ci∗ | , |ci∗+1 − vi∗ |} ≥ INL + 0.5vLSB,

which completes the proof for (A.2).

� A.2 Derivations for high resolution analysis

� A.2.1 High resolution analysis of MSE

In this section we first show a result for the MSE for a quantizer with random uniformly
distributed partition points in Lemma A.2, and its extension in Lemma A.3, then proceed
to show the high resolution approximation result in (3.15) by showing the increase in
MSE (comparing to (3.16)) is due to the random interval sizes resulting from the random
partitioning, rather than the random number of partition points in an interval.

Lemma A.2 (Theorem 1 in [20]). Given X ∼ Unif ([0,∆]) and Wi
i.i.d.∼ Unif ([0,∆]),

1 ≤ i ≤ n, then

EX,Wn [d (X,Wn)] =
∆2

2(n+ 2)(n+ 3)

Proof. See the proof in [20].

Lemma A.3. Given X ∼ Unif ([0,∆]), and for 1 ≤ i ≤ n,

Wi ∼ Unif ([0,∆]) w.p. pi

Wi /∈ [0,∆] w.p. 1− pi,
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and let kn =
∑n

i=1 pi, then if for some ε > 0,

lim
n→∞

kn

n1/2+ε
= c > 0,

then

lim
n→∞

k2
n EX,Wn [d(X,Wn)] =

∆2

2
.

Proof. Define Ui , 1 {Wi ∼ Unif ([0,∆])}, then Ui ∼ Bern (pi). Let K ,
∑n

i=1 Ui, we have

EX,Wn [d (X,Wn)] =
n∑

k=0

EX,Wn [d (X,Wn)|K = k]P [K = k] .

Lemma A.2 indicates that

EX,Wn [d (X,Wn)|K = k] =
∆2

2(k + 2)(k + 3)
.

Noting K is the sum of n independent Bernoulli random variables, by Hoeffding’s inequal-
ity,

P [|K − E [K]| > t] ≤ 2 exp

(
−2t2

n

)
.

Let tn = n1/2+ε/2, then

P [|K − E [K]| > tn] ≤ 2 exp (−2nε) .

Therefore, since limn→∞ tn/kn = 0,

lim
n→∞

k2
n

∑

k∈[kn−tn,kn+tn]

EX,Wn [d (X,Wn)|K = k]P [K = k]

≤ lim
n→∞

k2
n∆2

2(kn − tn + 2)(kn − tn + 3)
[1− 2 exp (−2nε)] = ∆2/2,

lim
n→∞

k2
n

∑

k/∈[kn−tn,kn+tn]

EX,Wn [d (X,Wn)|K = k]P [K = k]

≤ lim
n→∞

∆2/12 · P [K /∈ [kn − tn, kn + tn]] = 0

and hence

lim
n→∞

k2
n EX,Wn [d (X,Wn)] ≤ ∆2/2.

Similarly, we can show

lim
n→∞

k2
n EX,Wn [d (X,Wn)] ≥ ∆2/2
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and complete the proof.

Derivations for (3.15). We partition Supp(fX) by m points x1, x2, . . . , xm and let x0 and
xm+1 be the two ends points of Supp(fX), which could be −∞ and +∞ when Supp(fX)
is unbounded. We assume m is large enough such that

1. each interval Rj , (xj−1, xj ], 1 ≤ j ≤ m + 1 is small enough so that the densities
(fX , φ, fWi) can be seen as constant over Rj ;

2. the expected number of partition points that fall into each region Rj satisfies
EWn [N (xj−1, xj ;W

n)] = Ω
(
n1/2

)
.

Then

EX,Wn [d (X,Wn)] =

m+1∑

j=1

EX,Wn [d (X,Wn)|X ∈ Rj ]P [X ∈ Rj ] . (A.3)

For each interval Rj , 1 ≤ j ≤ m+ 1, based on the first assumption above,

P [Wi ∈ Rj ] = fWi (xj) |Rj |

and the conditional density given that Wi ∈ Rj is uniform over Rj . Therefore, let pij =
fWi (xj) |Rj |, then

Wi ∼ Unif ([xj−1, xj ]) w.p. pij

Wi /∈ [xj−1, xj ] w.p. 1− pij ,

and by the second assumption and Lemma A.3,

EX,Wn [d (X,Wn)|X ∈ Rj ] '
|Rj |2
2n2

j

,

where nj ,
∑n

i=1 pij . By the definition of fW̄ in (3.14),

nj = nfW̄ (xj) |Rj | .
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Therefore,

EX,Wn [d (X,Wn)] =
m+1∑

j=1

EX,Wn [d (X,Wn)|X ∈ Rj ]P [X ∈ Rj ]

'
m+1∑

j=1

|Rj |2
2n2

j

P [X ∈ Rj ]

'
m+1∑

j=1

|Rj |2

2 (nfW̄ (xj) |Rj |)2 fX (xj) |Rj |

'
m+1∑

j=1

1

2 (nfW̄ (xj))
2 fX (xj) |Rj |

' 1

2n2

∫
fX(x)f−2

W̄
(x) dx.

� A.2.2 High resolution analysis of maximum quantization cell size

In this section we first define the notion of spacing, which plays a pivotal role in maximum
quantization cell size analysis.

Definition A.1 (Spacing). Given a sequence of independent random variables W1,W2,
. . . ,Wn−1 with bounded support [a, b], the spacings induced by Wn are the differences
between two consecutive order statistics of Wn, i.e.,

Sk ,W(k) −W(k−1), 1 ≤ k ≤ n (A.4)

where we define W(0) , a,W(n) , b.

Lemma A.4 (Maximum spacing [68]). Let U1, U2, . . . , Un−1
i.i.d.∼ Unif ([0, 1]), then

the maximum of the spacing S1, S2, . . . , Sn induced by Un−1, Sn:n, satisfies

P [Sn:n > s] =

ks∑

k=1

(−1)k−1

(
n

k

)
(1− ks)n−1,

where ks = d1/se − 1.

Proof. See [68, (6.4.4)] and the derivations therein.

Lemma A.5 (Asymptotic approximation of maximum spacing [119]). Let U1, . . . ,

Un−1
i.i.d.∼ Unif ([0, 1]), then the maximum of the spacing S1, S2, . . . , Sn induced by Un−1,

Sn:n, satisfies

lim
n→∞

P
[
Sn:n <

log n+ a

n

]
= exp [− exp(−a)] , −∞ < a <∞.
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Alternatively,

lim
n→∞

P [Sn:n < s] = exp [−n exp(−ns)] , −∞ < s <∞.

Proof. See [119, Theorem 8.2 and 8.3].

Using Lemma A.5, we derive the high resolution analysis of maximum quantization
cell size.

Derivations for (3.17). Given the cumulative distribution FW̄ (·) and the range [a, b], we
define w0 = a and wm = b, and partition the interval [a, b] into m intervals by m − 1
points w1, w2, . . . , wm−1. We denote the expected number of partition points in interval
[wi−1, wi] ki, namely,

ki , E [N (wi−1, wi;W
n)] .

We assume m is large enough such that FW̄ can be seen as constant over each interval
[wi−1, wi], and since fW̄ (w) > 0, for any i, ki →∞ as n→∞.

Define SD (Wn; a, b) as the maximum spacing introduced by Wn over the interval [a, b],
then

lim
n→∞

P [SD (Wn) ≤ s] (a)'
m∏

i=1

P [SD (Wn; [wi−1, wi]) ≤ s] ,

where in (a) we ignore the spacing cross two neighboring intervals as n � m. Then by
the uniform assumption of fW̄ over [wi−1, wi] and Lemma A.5, denoting the length of
[wi−1, wi] as di = wi − wi−1, we have

lim
n→∞

P [SD (Wn; [wi−1, wi]) ≤ s] ' exp [−ki exp(−kis/di)] ,

where we approximate the number of partition points in [wi−1, wi] by its expected value
ki, due to the concentration of measure phenomenon that we have shown in the derivation
of (3.15) in Appendix A.2.1. Therefore,

P [SD (Wn; [a, b]) ≤ s] '
m∏

i=1

P [SD (Wn; [wi−1, wi]) ≤ s]

= exp

[
−

m∑

i=1

ki exp(−kis/di)
]
,
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where we use the approximation that SD in different intervals are independent. Noting
that ki ' nfW̄ (wi) di,

m∑

i=1

ki exp(−kis/di) =
m∑

i=1

n(wi − wi−1)fW̄ (wi) e
−nsfW̄ (wi)

' n
∫ b

a
fW̄ (w) e−nsfW̄ (w) dw,

and

lim
n→∞

P [SD (Wn; [a, b]) ≤ s] ' exp

{
−n
∫ b

a
fW̄ (w) e−nsfW̄ (w) dw

}
.

Derivations for (3.18). Let s = t log n/n, then

P [SD (Wn; [a, b]) ≤ s] ' exp

{
−n
∫ b

a
fW̄ (w) e−t lognfW̄ (w) dx

}

= exp

{
−
∫ b

a
fW̄ (w) e−tfW̄ (w)n1−tfW̄ (w) dx

}
.

When t > 1/f
[a,b]
min ,

lim
n→∞

n1−tfW̄ (w) → 0

and thus P [SD (Wn; [a, b]) ≤ s]→ 1. Similarly, when t < 1/f
[a,b]
max ,

lim
n→∞

n1−tfW̄ (w) →∞

and thus P [SD (Wn; [a, b]) ≤ s]→ 0.

� A.2.3 High resolution analysis of maximum quantization error

Derivation for (3.22). Let ∆ = (b − a)/2, then when n � m, SD ≤ ∆/m w.h.p.. Define
ui , a + i · (b − a)/m, 0 ≤ i ≤ m, and pi(s) , FW̄ (ci + s) − FW̄ (ci − s), then for
0 < s < ∆/m,

P [SI < ∆/m+ s] ' P
[
∀ui,∃Ṽj ∈ [ui − s, ui + s], 1 ≤ i ≤ m− 1

]

'
m−1∏

i=1

[1− (1− pi(s))n]

'
m−1∏

i=1

[
1− e−npi(s)

]

' 1−
m−1∑

i=1

e−npi(s)
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Derivation for (3.23). Note

2f
[a,b]
min s ≤ pi(s) ≤ 2f [a,b]

maxs,

thus

1− (m− 1)e−2nf
[a,b]
min s ≤ 1−

m∑

i=0

e−npi(s) ≤ 1− (m− 1)e−2nf
[a,b]
max s.

Then for

s =
logm

2nf
[a,b]
max

, ,

P [SI ≤ ∆/m+ s] ≤ 1− (m− 1)e−2nf
[a,b]
max s = 0

and for

s =
logm+ t

2nf
[a,b]
min

, ,

P [SI ≤ ∆/m+ s] ≤ 1− (m− 1)e−2nf
[a,b]
min s = 1− e−t.

� A.3 Proofs regarding Flash ADC design

� A.3.1 Proof of Lemma 3.1

Proof for Lemma 3.1.

1

n
E
[
N
(
x, x+ dx; Ṽ n

)]

=
1

n

n∑

i=1

E
[
1

{
Ṽi ∈ [x, x+ dx]

}]

=
1

n

n∑

i=1

P [Vi + Zi ∈ [x, x+ dx]]

=

∫
φ(z)

1

n

n∑

i=1

P [Vi ∈ [x− z, x− z + dx]] d z

=

∫
φ(z)

1

n
N (x− z, x− z + dx;V n) d z

=

∫
φ(z)τ(x− z)dxd z = (τ ∗ φ)(x)dx.
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� A.3.2 Optimal partition point density analysis

In this section we first prove the optimal conditions in Theorem 3.2. Following that we spe-
cialize Theorem 3.2 to τ∗(·) = δ(·) in Lemma A.6, and derive the corresponding conditions
for Gaussian and uniform input distributions respectively in Lemmas A.7 and A.8.

Proof for Theorem 3.2. When the existence condition in (3.28) is satisfied, then (3.29)
follows from the Panter and Dite formula [22].

In general, given the optimal τ∗, for any distribution h such that

∫
h = 1, (A.5)

R((1− ε)τ∗ + εh) ≥ R(τ∗). Therefore,

lim
ε→0

R((1− ε)τ∗ + εh)−R(τ∗)
ε

≥ 0,

which leads to
〈
fX ,

1

(τ∗ ∗ φ)2

〉
≥
〈
h ∗ φ, fX

(τ∗ ∗ φ)3

〉

=

〈
h,

fX
(τ∗ ∗ φ)3

∗ φ
〉
.

Since the above holds for any h that satisfies (A.5), we have

sup
x

(
fX

(τ∗ ∗ φ)3
∗ φ
)

(x) ≤
〈
fX ,

1

(τ∗ ∗ φ)2

〉
. (A.6)

Lemma A.6 (Condition for τ∗(x) = δ(x)). Define

g(x) ,

(
fX
φ3
∗ φ
)

(x), (A.7)

then if for any x ∈ A, g′(x) ≤ 0, τ∗(x) = δ(x).

Proof. Substitute τ∗(x) = δ(x) in (A.6), we have

sup
x

(
fX
φ3
∗ φ
)

(x) ≤
〈
fX ,

1

φ2

〉
. (A.8)

Since fX is symmetric and smooth on A, g(x) is an even function on A and is smooth,
therefore, g′(0) = 0. Since

sup
x
g(x) ≥ g(0) =

〈
fX ,

1

φ2

〉
, (A.9)

we know if for any x ∈ A g′(x) ≤ 0 then x = 0 maximizes g(x), thus (A.8) is satisfied and
hence δ(x) is indeed the optimal solution.
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Remark A.1. Calculation based on (A.7) shows

g′(x) = 2π

∫ {
fX(t)(t− x) exp

[(
3t2 − (x− t)2

)

2σ2

]}
dt. (A.10)

Below we show that for both Gaussian and uniform input distributions, the optimal
quantization density τ∗(x) = δ(x) when the noise standard deviation σ is above some
threshold.

Lemma A.7. When X ∼ N
(
0, σ2

X

)
, τ∗(x) = δ(x) if and only if σ2 ≥ 3σ2

X .

Proof. When σ2 ≥ 3σ2
X , substitute fX(t) ∝ exp

[
−t2/(2σ2

X)
]

into (A.10), we have

g′(x) ∝
∫

(t− x) exp

[
−σ

2 − 2σ2
X

2σ2
Xσ

2

(
t− xσ2

X

σ2 − 2σ2
X

)2
]
d x

=
xσ2

X

σ2 − 2σ2
X

− x =
x(3σ2

X − σ2)

σ2 − 2σ2
X

≤ 0.

When σ2 < 3σ2
X , τ∗(x) 6= δ(x) by (3.29) in Theorem 3.2.

Lemma A.8. When X ∼ Unif ([−1, 1]) τ∗(x) = δ(x) if and only if σ ≥ σ0 ≈ 0.7228.

Proof. From (A.10) we have for Unif ([−1, 1]),

g′(x) ∝
∫ 1

−1
(t− x) exp

(
t+ x/2

σ2

)2

d t.

Numerically solution indicates if σ ≥ σ0 ≈ 0.7228, g′(x) ≤ 0 for any x, and if σ < σ0,
g′′(0) > 0, and (3.27) is violated when τ(x) = δ(x).

� A.4 Proofs for the deterministic error correction setting

� A.4.1 Proofs for the general purpose setting

Proof of Lemma 4.6. For each functional element si with the set of possible elements
Ai (S), it needs to connect to t copies for each type of element x ∈ Ai (S). Therefore,

|E| ≥
k∑

i=1

tni = ktn̄,

and thus E = |E| /k ≥ tn̄. In addition, define nx =
∑k

i=1 1 {x ∈ Ai (S)} and let mx be
the number of redundant elements with type x, then mxd ≥ nxt, and hence

m =
∑

x∈X
mx

≥ t/d
∑

x∈X
nx

= t/dkn̄,
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and ρ = m/k ≥ tn̄/d.

� A.4.2 Proofs for the application-specific setting

To prove (a) in Lemma 4.9, we first show the following lemma.

Lemma A.9. For the application-specific setting, a redundant circuit C is t-correcting
only if for any subsequence sI of sk,

|N (sI)| ≥ t |A(sI)| ,

where N (sI) = ∪i∈IN (si).

Proof of (a) in Lemma 4.9. Since E = t and the circuit to be t-correcting, each functional
element si connects to exactly t redundant elements. If there exist i 6= j such that
N (si) ∩ N (sj) 6= ∅, then N (si) ∪ N (sj) < 2t, by Lemma A.9 this circuit is not t-error
correcting when si 6= sj . Therefore, N (si) ∩N (sj) = ∅ for any i 6= j, and hence ρ = t.

� A.5 Proofs for the probabilistic error correction setting

� A.5.1 Proofs for Lemma 4.11

We use the standard random graph processes G(m, k, p = p(k)), which is a bipartite graph
with m nodes on the left (vertex set U) and k nodes on the right (vertex set V), and
generate edges with probability p. We assume m = ρk, where ρ ≥ 1.

We show a general result regarding matching in random bipartite graph in Lemma A.11,
which relies on Lemma A.10.

Lemma A.10. For a random bipartite graph G(m, k, p), if

mpk = log k + w(k),

where w(k)→∞ as k →∞, then

P [deg(si) > 0 ∀ si ∈ V]→ 1.

Proof. Note that the distribution for the degree of si deg(si)
i.i.d.∼ Binomial (m, pk), and

hence the probability of existing at least one zero degree node in V is

P
[
min
si∈V

deg(si) = 0

]
≤
∑

si∈V
P [deg(si) = 0]

= k(1− pk)m
≤ exp {− [mpk − log k]} .

Lemma A.11 (Matching in random bipartite graph). For a random bipartite graph
G(m, k, p), if

mpk = log k + w(k),
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where w(k)→∞ as k →∞, then

P [G does not contain a matching with size k]→ 0

as k →∞.

Proof. This results follows from Lemma A.10 and a generalized version of [120, Theorem
7.11], where we generalize the proof from perfect matching to a matching that saturates V.
The generalization can be done by modifying [120, Lemma 7.9,Lemma 7.12] accordingly.

Proof of Lemma 4.11. Construct a sequence of random bipartite graph ensembles G(m, k, p)
with

m = ρk (A.11)

pk =
log k + w(k)

m(1− ε) , (A.12)

where ρ = ε/(1 − ε) and w(k) → ∞ as k → ∞. We want to show that there exists a
sequence of graphs in this sequence of ensembles that achieves (ρ,E) = (ε/(1−ε), 1/(1−ε)).

Let e ∈ {0, 1}k+m be the random error pattern vector of a given circuit, where 1 is
used to indicate failures and 0 otherwise, and let m′(e) be the number of failed redundant
elements and k′(e) be the number of failed functional elements indicated by e respectively,
then for any λ > 0, define

E1(λ) =
{
e : m′ ≤ ρk(ε+ λ), k′ ≤ k(ε+ λ)

}
,

E2(λ) = {0, 1}k+m \ E1(λ).

Using G to denote a graph drawn from the random bipartite graph ensemble G(m, k; p),
then

Pf =
∑

G

PG(G)
∑

e

Pe(e)Pf (G, e)

=
∑

e

Pe(e)
∑

G

PG(G)Pf (G, e)

=
∑

e∈E1(λ)

Pe(e)Pf (e) +
∑

∑
e∈E2(λ)

Pe(e)Pf (e).

where Pf (e) ,
∑

G PG(G)Pf (G, e).
Note that as k →∞, there exists λk → 0 such that

∑

e∈E2(λk)

Pe(e)→ 0. (A.13)

In addition, for ρ > ε/(1− ε), we have for any e ∈ E1(λk), when k is sufficiently large, the
number of working redundant elements is no less than the number of failed functional
elements. Then by Lemma A.11, for any e ∈ E1(λk), which essentially results in a

152



A.5. PROOFS FOR THE PROBABILISTIC ERROR CORRECTION SETTING

G(m′, k′, p) subgraph,
Pf (e)→ 0. (A.14)

Therefore, (A.13) and(A.14) lead to

Pf → 0.

Hence for any δ > 0, there exits K such that for any k ≥ K,

Pf ≤ δ/2. (A.15)

One the other hand, define

G1(λ) , {G ∈ G : E(G) ≤ km(pk + λ)} ,
G2(λ) , {G ∈ G : E(G) > km(pk + λ)} .

Note that

Pf =
∑

G

PG(G)Pf (G)

=
∑

G∈G1

PG(G)Pf (G) +
∑

G∈G2

PG(G)Pf (G),

where Pf (G) ,
∑

e Pe(e)Pf (G, e), and as k →∞, there exists λk → 0 such that

∑

G∈G1(λk)

PG(G)→ 1

∑

G∈G2(λk)

PG(G)→ 0.

If for any G ∈ G1(λk), Pf (G) ≥ δ, then

Pf =
∑

G

PG(G)Pf (G)

≥
∑

G∈G1(λk)

PG(G)δ

≥ δ/2,

which contradicts (A.15). Therefore, there exists a sequence of graph {G ∈ G1} such that
Pf (G)→ 0, which leads to

E(G) =
1

1− ε.
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� A.5.2 Proof of Lemma 4.12

Theorem A.12 (Chernoff bound [121]). Let X be a Binomial random variable
Binomial (n, p), then

P [X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ
, (A.16)

P [X < (1− δ)µ] < exp(−µδ2/2), (A.17)

where µ = E [X] = np.

Proof of Lemma 4.12. Let t = − log ε, then the lemma follows from Theorem A.12 and
union bound.

� A.5.3 Proof of Lemma 4.13

Proof of Lemma 4.13. Let ck = 1/ log k, and let

t = (1 + ck)
log k

log(1/ε)
,

then for the redundant circuit Cdr,

Pe = P [exists si that cannot be corrected]

≤ kεt+1 = kεk−1−ck = k−ckε→ 0.

as k →∞. Therefore, as k →∞, ρ = t→∞, and

E = lim
k→∞

kt

k log k

= lim
k→∞

1 + ck
log(1/ε)

=
1

log(1/ε)
.

� A.5.4 Proof of Lemma 4.14

Proof of Lemma 4.13. Assume a redundant circuit has E < −1/ log(ε), then let E =
−(1 − δ)1/logε, δ > 0. Then when k large enough, there exists at least δ/2k functional
elements with degree less than t = − log k/ log ε. Therefore,

P [One of these functional elements cannot be corrected] ≥ 1− (1− εt+1)δk+o(k).

Noting

εt+1 > ε/k,
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lim
k→∞

1− (1− εt+1)δk/2 ≥ lim
k→∞

1− (1− ε/k)δk/2

= lim
k→∞

1−
[
(1− ε/k)k/ε

]δε/2

= 1− eδε/2 > 0.

Therefore, this redundant circuit is not ε-reliable.
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Appendix B

Results and proofs for Part II

� B.1 Some results in order statistics

In this section we provide some results in order statistics they are useful for our perfor-
mance analysis.

We calculate the expected value of various order statistics (maxima, minima, k-th) of
two common distributions, Exponential and Pareto, in Lemmas B.1 and B.2 and Lem-
mas B.3 and B.4 respectively.

Also, in Lemma B.5, we provide the values of the expected value for the extreme value
distributions defined in Theorem 6.5.

Exponential distribution The minimum of Exponential random variables is again an
Exponential random variable. The maximum of Exponential random variables follows the
Gumbel distribution in (6.7).

Lemma B.1 (Minimum and Maximum of Exponential random variables). Given

X1, X2, . . . , Xn
i.i.d.∼ FX ∼ Exp (λ), i.e.,

FX(x) , 1− e−λx, x ≥ 0,

then

X1:n ∼ Exp (nλ) ,

λXn:n − lnn ∼ Gumbel.

Lemma B.2. Given an Exponential distribution FX ∼ Exp (λ), for 1 ≤ k ≤ n,

E [Xk:n] = (Hn −Hn−k)/λ, (B.1)

where Hn =
∑n

k=1 1/k is the n-th harmonic number.

Pareto distribution The minimum of Pareto random variables is again an Pareto ran-
dom variable. The maximum of Pareto random variables follows the Fréchet distribution
in (6.8).

Lemma B.3 (Minimum and Maximum of Pareto random variables). Given X1, X2,

. . . , Xn
i.i.d.∼ FX ∼ Pareto (α, xm), i.e.,

FX(x) ,

{
1− (xm/x)α x ≥ xm
0 x < xm

,
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then

X1:n ∼ Pareto (nα, xm) ,

Xn:n

xmn1/α
∼ Fréchet (α) .

Lemma B.4 (Expected value of order statistics [122]). Given a Pareto distribution
FX ∼ Pareto (xm, α), for 1 ≤ k ≤ n,

E [Xk:n] =
Γ (n− k + 1− 1/α) · n!

Γ (n+ 1− 1/α) · (n− k)!
xm, (B.2)

where Γ (·) is the Gamma function (cf. (6.10)).

Lemma B.5 (Expected value of extreme value distributions).

E [Λ] = γEM,

E [Φα] =

{
Γ (1− 1/α) α > 1

+∞ otherwise
,

E [Ψα] = −Γ (1 + 1/α) ,

where γEM is the Euler-Mascheroni constant and Γ(·) is the Gamma function, i.e.,

Γ(t) ,
∫ ∞

0
xt−1e−x dx.

� B.2 Proofs regarding the single-fork policy

� B.2.1 Proof for latency and costs

Proof for Lemma 6.1. Since we apply the same action to all remaining tasks at time T (1),
Yj are i.i.d.. Also,

P [Yj > y] = P
[
min

{
∆Xj ,T ∗ , X

′
1:r

}
> y
]

= P
[
∆Xj ,T ∗ > y

]
P
[
X ′1:r > y

]

= F̄∆X,T∗ (y)
(
F̄X (y)

)r
.

Proof for Theorem 6.3. The total cost of πSF (p, r, l;n) can be analyzed by the cost in the
first stage and second stage.
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For cloud computing,

Ccloud (πSF) = C(1) (πSF) + C(2) (πSF)

C(1) (πSF) =

p̄n∑

i=1

Xi:n + npT (1) (πSF)

C(2) (πSF) = (r + 1)

pn∑

j=1

Yj:pn

= (r + 1)

pn∑

j=1

Yj

For crowd sourcing,

Ccrowd (πSF) = n+ npr

� B.2.2 Proofs for Theorem 6.10

Proof of Lemma 6.9. Denote x∗ = l · xp̄. First, note that

F̄Y (y) = F̄∆X,x∗ (y)
(
F̄X (y)

)r
.

=
F̄X (x∗ + y)

F̄X (x∗)

(
F̄X (y)

)r
.

If FX ∈ DA (Λ), then

lim
x→ω(FX)−

F̄X (x+ tη(x))

F̄X (x)
= e−t,

and thus

lim
y→ω(FY )−

F̄Y (y + uη(y))

F̄Y (y)
= lim

y→ω(FY )−

F̄X (x∗ + y + uη(y))
(
F̄X (y + uη(y))

)r

F̄X (x∗ + y)
(
F̄X (y)

)r

= lim
y→ω(FY )−

F̄X (x∗ + y + uη(y))

F̄X (x∗ + y)

(
F̄X (y + uη(y))

F̄X (y)

)r

=

{
e−u(r+1) ω (FX) =∞ or x∗ = 0

e−u ω (FX) <∞ and x∗ 6= 0
(B.3)

Therefore, FY ∈ DA (Λ).
If FX ∈ DA (Φα), then for any t > 0,

lim
x→∞

F̄ (tx)

F̄ (x)
= t−α, α > 0,
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and thus for any u > 0,

lim
y→∞

F̄Y (uy)

F̄Y (y)
= lim

y→∞
F̄X (x∗ + uy)

(
F̄X (uy)

)r

F̄X (x∗ + y)
(
F̄X (y)

)r

= lim
y→∞

F̄X (x∗ + uy)

F̄X (x∗ + y)

(
F̄X (yu)

F̄X (y)

)r

= u−(r+1)α, u > 0 (B.4)

Therefore, FY ∈ DA
(
Φ(r+1)α

)
.

If FX ∈ DA (Ψα), then for any t > 0,

lim
x→0+

F̄X (ω (FX)− tx)

F̄X (ω (FX)− x)
= tα, α > 0,

and note that ω (FY ) = ω (FX)− x∗,

lim
y→0

F̄Y (ω (FY )− uy)

F̄Y (ω (FY )− y)
= lim

y→0

F̄X (ω (FY )− uy + x∗)
(
F̄X (ω (FY )− uy)

)r

F̄X (ω (FY )− y + x∗)
(
F̄X (ω (FY )− y)

)r

= lim
y→0

F̄X (ω (FX)− uy)

F̄X (ω (FX)− y)

(
F̄X (ω (FX)− x∗ − uy)

F̄X (ω (FY )− x∗ − y)

)r

=

{
u(r+1)α x∗ = 0

uα x∗ > 0
. (B.5)

Therefore, FY ∈ DA
(
Ψ((1−l)r+1)α

)
.

Proofs of Theorem 6.10. Lemma 6.9 indicates FY is in the same domain of attraction as
FX . Then (6.6) indicates

E [Yn:n] = ãnE [Gγ ] + b̃n,

and finally the proof follows from Lemma B.5 and Theorem 6.5.

� B.3 Calculations regarding the single-fork policy

� B.3.1 Calculations for Pareto execution time distribution

Scaling coefficient for the case of no relaunching

In the case of no relaunching, Y = min {Pareto (α, xp̄)− xp̄,Pareto (rα, xm)}, which leads
to

F̄Y (y) =





(
1 +

y

xp̄

)−α
y < xm

[(
1 +

y

xp̄

)(
y

xm

)r]−α
y ≥ xm

.
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Then by Corollary 6.7, as n→∞, ãn = F̄−1
Y (1/n), thus

[(
1 +

ãn
xp̄

)(
ãn
xm

)r]
= n1/α,

which leads to (6.12).

Calculation of E [Y ] for the case of no relaunching

E [Y ] = E [Y |Y < xm]P [Y < xm] + E [Y |Y ≥ xm]P [Y ≥ xm] . (B.6)

Let Z ∼ Pareto (xp̄, α)− xp̄, then Z|Z ≥ xm ∼ Pareto (xp̄ + xm, α), and thus

F̄Y |Y≥xm (y) =

(
xp̄ + xm

y

)α(xm
y

)rα

=

(
[(xp̄ + xm)xrm]1/(r+1)

y

)(r+1)α

,

which corresponds to Pareto
(
[(xp̄ + xm)xrm]1/(r+1), (r + 1)α

)
. Therefore

E [Y |Y ≥ xm] =
(r + 1)α

(r + 1)α− 1
[(xp̄ + xm)xrm]1/(r+1).

Regarding E [Y |Y < xm], we have

FY |Y <xm (y) =
1∫ xm

0 FY (y) dy

[
1−

(
xp̄

y + xp̄

)α]
,

and we can evaluate E [Y |Y < xm] =
∫ xm

0

[
1− FY |Y <xm (y)

]
dy numerically.

Calculation for the cloud computing cost

For the nodes that finish before replication, the total running time is

p̄n∑

i=1

E [Xi:n] ≈
p̄n∑

i=1

F−1
X (i/n)

= xm

p̄n∑

i=1

(1− i/n)−1/α

≈ xmn
∫ p̄

0
(1− x)−1/αdx

= nxm
α

α− 1

[
1− p(α−1)/α

]
.
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Therefore, by Theorem 6.3,

E [Ccloud (πSF)] = nxm
α

α− 1

[
1− p(α−1)/α

]
+ npE [Xp̄n:n] + (r + 1)(pn)E [Y ] ,

where E [Xp̄n:n] given by Lemma B.4, E [Y ] for no relaunching is discussed in Appendix B.3.1
and E [Y ] with relaunching satisfies

E [Y ] =
(r + 1)α

(r + 1)α− 1
xm.

� B.3.2 Calculations for Shifted Exponential execution time distribution

Calculation for the case of no relaunching

In the case of no relaunching, Y = min {Exp (λ) , xm + Exp (rλ)}, and thus

F̄Y (y) =

{
e−λy 0 < y < xm

eλrxme−λ(r+1)y y ≥ xm
. (B.7)

Calculation of E [Y ]

E [Y ] = E [Y |Y < xm]P [Y < xm] + E [Y |Y ≥ xm]P [Y ≥ xm] . (B.8)

Let Z ∼ Exp (λ), then

E [Y |Y < xm]P [Y < xm] = E [Z|Z < xm]P [Z < xm] (B.9)

E [Y |Y ≥ xm]P [Y ≥ xm] = E [Exp ((r + 1)λ)]
(
e−λrxm

)
=

1

(r + 1)λ

(
e−λrxm

)
. (B.10)

In addition,

1/λ = E [Z] = E [Z| z < xm]P [Z < xm] + E [Z| z ≥ xm]P [Z ≥ xm]

= E [Z| z < xm]P [Z < xm] + e−λxm/λ. (B.11)

Then E [Y ] in (6.17) follows from (B.8) to(B.11).

Calculation of E [Ypn:pn] Based on (B.7), for

η(y) =
1

(r + 1)λ
,

we have

lim
y→ω(FY )

F̄Y (y + uη(y))

F̄Y (y)
= e−u, (B.12)
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and

ãn = 1/ [λ(1 + r)] ,

b̃n = F̄−1
Y (1/n) =

ln(pn) + λrx0

λ(r + 1)
.

Then E [Ypn:pn] in (6.17) follows from Theorem 6.10.

Argument for Observation 6.18

Noting Hn ≈ lnn+γEM, then the total running time for nodes that finish before replication
is

p̄n∑

i=1

E [Xi:n] = nxm +

p̄n∑

i=0

1

λ
(Hn −Hn−i)

≈ nxm +
1

λ

p̄n∑

i=0

ln
n

n− i

≈ nxm +
1

λ

[
p̄n lnn− ln

n!

(pn)!

]

≈ nxm +
1

λ
[p̄n+ pn ln p] .

Therefore,

λE [Ccloud] = λpnxm − pn ln p+ λnxm + [p̄n+ pn ln p] + (r + 1)pnλE [Y ]

= λnxm + n+ pn (λxm + (r + 1)λ · E [Y ]− 1)

=

{
λnxm + n+ pn

[
λxm + r

(
1− e−λxm

)]
l = 1

λnxm + n+ pnλ(r + 2)xm l = 0
.

Derivations for Observation 6.19

Define β = λxm, then

λE [Ccloud(l = 1)] > λE [Ccloud(l = 0)]

⇔ n+ pn
[
λxm + r

(
1− e−λxm

)]
> n+ pnλ(r + 2)xm

⇔ βr + β − r + re−β < 0.

And note that the function g(β) = βr + β − r + re−β is monotonically increasing as
g′(β) = r + 1− re−β > 0 for any r ∈ Z+.

� B.4 Proofs for single task scheduling

In this section we present the detailed analysis for the problem of optimal scheduling for
a single task.
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� B.4.1 Proofs for Theorem 7.1 and Theorem 7.2

In this section we show that the E [T ]-E [C] trade-off curve is always piecewise linear,
with the vertices of the piecewise linear curve corresponding to starting time vector that
satisfies certain properties.

We first define the possible finishing time

wi,j , ti + αj , 1 ≤ i ≤ m, 1 ≤ j ≤ l

and the set of all possible finishing times

W , {wi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ l} .

Let k = |W|, we denote the sorted version of W as w = [wσt(1), wσt(2), . . . , wσt(k)] such
that

wσt(1) ≤ wσt(2) ≤ . . . ≤ wσt(k),

where σt(k) maps the rank of the finishing time k to a tuple (ik, jk).
Note that

T = min
1≤i≤m

Xi + ti,

and T ∈ W, we define the event

Ak1,k2 ,

{ ∗
min

1≤i≤m,1≤j≤l
{ti +Xj} = tk1 + αk2

}
,

where min∗ indicates we always choose the smallest (k1, k2) (by lexicographic order in k1

and k2) so that all the events {Ak1,k2 , 1 ≤ k1 ≤ m, 1 ≤ k2 ≤ l} are disjoint.
Therefore,

E [T ] =
∑

k1,k2

E [T | Ak1,k2 ]P [Ak1,k2 ]

=
∑

k1,k2

(tk1 + αk2)P [Ak1,k2 ] , (B.13)

E [C] =
m∑

j=1

E [Cj ]

=

m∑

j=1

∑

k1,k2

|tk1 + αk2 − tj |+ P [Ak1,k2 ] . (B.14)

To analyze (B.13) and (B.14), we first show that the relative ordering of elements in W
determines P [Ak1,k2 ].

164



B.4. PROOFS FOR SINGLE TASK SCHEDULING

Lemma B.6. P [Ak1,k2 ] is independent of {αj , 1 ≤ l ≤ l} given the relative ordering of
elements in W, i.e.,

P [Ak1,k2 |σt] = f(σt, k1, k2, p1, . . . , pl), (B.15)

where f is some function.

Proof. Ak1,k2 indicates node k1 is the first node that finishes execution, and it finishes
execution after running for αk2 . Define k , σ−1

t (k1, k2), i.e.,

tk1 + αk2 = wσt(k),

then

P [Ak1,k2 |σt] = P


 ⋂

j 6=k1

{tj +Xj} > wk1,k2

∣∣∣∣∣∣
σt




=
∏

j 6=k1

P [tj +Xj > wk1,k2 |σt] . (B.16)

Define
Pj , {p : σt(i) = (j, p), i > k} ,

which is uniquely determined by σt and k, then for any i 6= k1,

qj , P [tj +Xj > wk1,k2 |σt] =
∑

p∈Pj
p, (B.17)

which is a function of k, σt and p = [p1, p2, . . . , pm].
Combing (B.16) and (B.17), we have (B.15).

Proof of Theorem 7.1. We prove that there exists finitely many subspaces of [0, αl]
m such

that in each subspace, E [T ] and E [C] is a linear function in t, and thus they are piecewise
linear in t on [0, αl]

m.
Define B1(σ) , {t : σt = σ}, and (k1, k2) = σ(k), then the set

B1(σ) = {t : t11 + α12 ≤ t22 + α22 ≤ . . . ≤ tk1 + αk2} (B.18)

is defined by k− 1 inequalities, and each of this inequality partition the space [0, αl]
n into

two subspaces. Therefore, B1(σ) is the intersection of k−1 connected subspaces, resulting
itself being a subspace of [0, αl]

m. And it is obvious that there are only finitely many such
subspaces. Therefore, by Lemma B.6 and (B.13), in each subspace B1(σ), E [T ] is a linear
function in t.

Regarding E [C], we define

B2(b = [bi,j ]1≤i≤m,1≤j≤k, σ) ⊂ B1(σ)

,
{
t : σt = σ, 1 {tk1 + αk2 − ti > 0} ∈ {0, 1} , (k1, k2) = σ−1(j), 1 ≤ j ≤ k

}
, (B.19)
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where 1 {·} is the indicator function. Similar to the argument above, given σ and b,
B2(b, σ) corresponds to a subspace of [0, αl]

m and there are only finitely many such sub-
spaces. By Lemma B.6 and (B.14), in each subspace B2(b, σ), E [C] is a linear function
in t.

Therefore, both E [T ] and E [C] are piecewise linear functions of t in [0, αl]
m.

Proof of Theorem 7.2. By Theorem 7.1 and the fact that Jλ is a linear combination of
E [T ] and E [C], the optimal t∗ that minimizes Jλ(t) is at the boundaries of two or more
subspaces defined in (B.19).

Then by (B.18) and(B.19), it is not hard to see that for some j1, j2, j3, j4 and l1, l2, l3,
we have

t∗j1 − t∗j2 = αl1 − αl2
t∗j3 − t∗j4 = αl3 .

Then it is not hard to see that given m, t = [t1, t2, . . . , tm], and without loss of generality,
let t1 = 0,

t∗i ∈ Vm,
where Vm is defined in (7.8), i.e.,

Vm ,



v : v =

l∑

j=1

αjwj , 0 ≤ v ≤ αl,
l∑

j=1

|wj | ≤ m,wj ∈ Z



 .

Note that an element in Vm is uniquely determined by w = [w1, . . . , wl], and the number
of possible w is

2l
(
m+ l − 1

l − 1

)
.

Therefore,

|Vm| ≤ 2l
(
m+ l − 1

l − 1

)
≤ [2(m+ l − 1)]l,

which is finite given finite m and l.

� B.4.2 Proofs related to corner points

Proof of Theorem 7.4. Let Ui+1 = [u1, u2, . . . , uki ] be the sorted version of Ui+1, then
E [T (t′)] and E [C(t′)] are linear in ti+1 over the each interval [uj , uj+1], 1 ≤ j ≤ ki − 1.
Therefore, the optimal ti+1 ∈ Ui+1.

� B.4.3 Proof of Lemma 7.5

Proof of Lemma 7.5. Consider a set of m nodes on which we run the task according to the
policy π = [t1, t2, · · · , tm]. Without loss of generality, we assume t1 = 0. If the starting
time of a node is αl > tj ≥ αl − α1, the earliest time it can finish execution of the task
is t + α1. This time is greater than αl, the latest time at which the first node started
at time t1 = 0 finishes the task. Thus, starting the node at time tj only adds to the
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cloud computing cost E [C], without reducing the latency E [T ]. Hence, any starting time
tj ≥ αl − α1 should be replaced by αl, which corresponds to not using that node at all.

� B.4.4 Proof of Theorem 7.6

Theorem 7.6 follows directly from the following lemma.

Lemma B.7. Given PX is a bimodal distribution and we have at most two nodes, the
expected latency and total cloud computing cost satisfies that if t2 + α1 < α2,

E [T ] = α1(p2 − p1)p1 + α2p
2
2 + t2p1p2,

E [C] =

{
2E [T ]− t2(p2

1 + p2
2) if t2 < α1

2E [T ]− α1p1 − t2p2 if t2 ≥ α1

;

otherwise if t2 + α1 ≥ α2,

E [T ] = α1p1 + α2p2

E [T ] = 2E [T ]− α1p1 − t2p2

Proof. By (7.5) and(7.6) and calculation.

� B.4.5 Proof of Theorem 7.7

Proof of Theorem 7.7. (a) Follows from Lemma 7.5.

(b) If α1
α2

> 1
2 then by Lemma 7.5 we know that if [0, α1] is suboptimal. Now sup-

pose α1
α2

> 1
2 . We know that π1 = [0, 0] and π2 = [0, α2] are the two extreme ends

of the (E [C] ,E [T ]) trade-off. If the line joining points (E [C(π1)] ,E [T (π1)]) and
(E [C(π2)] ,E [T (π2)]) lies below (E [C(π)] ,E [T (π)]), then π = [0, α1] will be subopti-
mal. Comparing the slopes of the lines gives the condition α1

α2
> p1

1+p1
.

(c) Policy π2 = [0, α2] is suboptimal if it is dominated by either π = [0, α1] or π1 = [0, 0].
Both π and π1 give lower expected execution time E [T ] than [0, α2]. So if one of them
has expected cloud computing cost E [C] lower than [0, α2], then it follows that [0, α2]
is dominated by that strategy. But the E [C] with starting time vector [0, 0] is always
greater than that of [0, α1]. Thus, checking if the expected cloud user cost E [C] with
[0, α1] is smaller than that for [0, α2], gives the condition α1

α2
< 2p1−1

4p1−1 for suboptimality
of [0, α2].

(d) , (e), (f) For cost function J = λE [T ] + (1 − λ)E [C], the constant cost contour is
a line with slope −1−λ

λ . As we increase J , the contour line shifts upward until it
hits the (E [C] ,E [T ]) trade-off. The point where it meets the (E [C] ,E [T ]) trade-off
corresponds to the optimal policy. In R1, policy π2 = [0, α2] is optimal if the slope of
the line joining (E [C(π1)] ,E [T (π1)]) and (E [C(π2)] ,E [T (π2)]) is less than or equal
to −1−λ

λ . We can simplify and show that the slope of the line is −τ1. The result
follows from this. Similarly, the slope of the line joining [0, 0], [0, α1] is −τ2, and that
of the line joining [0, α1 and [0, α2] is −τ3. Comparing the slope of the contour, −1−λ

λ
with these slopes gives the conditions of optimality for each of the policies.
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� B.4.6 Proof of Theorem 7.8

Proof of Theorem 7.8. By Theorem 7.4, for a policy that replicate once, the optimal
launch time t satisfies t = α1. Hence

td = [t1 = 0, . . . , tm−d = 0, tm−d+1 = α1, . . . , tm = α1],

which implies

P [T > α1] = pm−d2 ,

P [T > 2α1] = pm2 .

Therefore,

P [T = α1] = 1− pm−d2 ,

P [T = 2α1] = pm−d2 − pm2 ,
P [T = α2] = pm2 ,

and

E [T (d)] , E [T (td)]

= α1 ·
[
1 + pm−d2 − 2pm2

]
+ α2 · pm2

E [C (d)] , E [C(td)]

= (m− d)E [T (d)] + d (E [T (d)]− α1)

= mE [T (d)]− α1d

Jλ(d) , Jλ(td)

= (λ+mλ̄)E [T (d)]− λ̄α1d,

where λ̄ , 1− λ. Therefore,

Jλ(d+ 1)− Jλ(d) = (λ+mλ̄)(E [T (d+ 1)]− E [T (d)])− λ̄α1

= (λ+mλ̄)α1

(
pm−d−1

2 − pm−d2

)
− λ̄α1

= (λ+mλ̄)α1p
m−d−1
2 p1 − λ̄α1.

Solve
Jλ(d+ 1)− Jλ(d) > 0,

we have

pm−d−1
2 p1 >

λ̄

(λ+mλ̄)
,

where the left hand side increases as d increases from 0 to n− 1. Therefore, when

d > a , m− 1− log λ̄− log
(
(λ+mλ̄)p1

)

log(p2)
, (B.20)
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Jλ(d+ 1) > Jλ(d),

and otherwise
Jλ(d+ 1) ≤ Jλ(d).

Note that when

pm−1
2 p1 >

λ̄

(λ+mλ̄)
,

a < 0, and when
λ̄

(λ+mλ̄)
> p1,

a > m− 1. Therefore,

d =





0 when λ̄/(λ+mλ̄) < pm−1
2 p1

m− 1 when λ̄/(λ+mλ̄) > p1

dae − 1, or dae otherwise

.

� B.5 Proofs for multi-task scheduling

� B.5.1 Proof of Theorem 7.9

Proof. We prove the statement by showing an example that a scheduling policy that takes
the interaction of task latencies into account (joint policy) is better than a scheduling each
task independently (separate policy).

Suppose we have two tasks and 4 computing nodes. The service time distribution
of each node is bimodal, taking values α1 and α2 > α1 with probability p1 and 1 − p1

respectively. Assume 2α1 < α2.
Separate Policy

Consider a policy πs where we choose the optimal scheduling policy separately for each
task. We can follow the analysis of the bimodal two-node case in Appendix B.4.5 as a
guideline to choose the optimal policy for each task.

Suppose the policy [0, α2] is optimal for a given cost function. For this to be true, the
parameters α1, α2 and p1 need to satisfy,

α1

α2
>

2p1 − 1

4p1 − 1
(B.21)

If we run each task on two nodes using the policy [0, α2], the expected total latency
and cloud computing cost are,

E [T (πs)] = p2
1α1 + (1− p2

1)α2,

E [Ccloud (πs)] = 2p2
1α1 + 2p1(1− p1)(α1 + α2) + 2(1− p2

1)α2.

Joint Policy
Consider a joint policy πd where we start with each task according to policy [0, α2]. If
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task 1 (task 2) is served by its node at time α1, we start the execution the task 2 (task 1)
on an additional node at time α1.

Using this joint policy the performance metrics are given by

E [T (πd)] = p2
1α1 + 2p2

1(1− p1)(2α1) + (1− p1)2(2p1 + 1)α2,

E [C(πd)] = p2
1(2α1) + 2p2

1(1− p1)(3α1) + (1− p1)2(2p1 + 1)(2α2).

We can show that for 2α1 < α2, E [T (πd)] < E [T (πs)]. Now let us find the condition
for E [C(πd)] < E [C(πs)].

E [C(πd)] < E [C(πs)]

⇒ α1

α2
<

2p1 − 1

3p1 − 1
.

Thus, the joint policy gives strictly lower cost Jλ = λE [C]+(1−λ)E [T ] than the separate
policy for any λ if

2p1 − 1

4p1 − 1
<
α1

α2
<

2p1 − 1

3p1 − 1
. (B.22)
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Appendix C

Results and proofs for Part III

� C.1 Geometry of permutation spaces

In this section we provide results on the geometry of the permutation space that are useful
in deriving the rate-distortion bounds.

We first define D-balls centered at σ ∈ Sn with radius D under distance d(·, ·) and
their maximum sizes:

Bd(σ,D) , {π : d(π, σ) ≤ D} , (C.1)

Nd(D) , max
σ∈Sn

|Bd(σ,D)| . (C.2)

Let Bτ (σ,D), B`1 (σ,D) and Bx,`1 (σ,D) be the balls that correspond to the Kendall
tau distance, `1 distance of the permutations, and `1 distance of the inversion vectors, and
Nτ (D), N`1 (D), and Nx,`1 (D) be their maximum sizes respectively.

Note that (9.11) implies Bτ (σ,D) ⊂ Bx,`1 (σ,D) and thus Nτ (D) ≤ Nx,`1 (D). Below
we establish upper bounds for Nx,`1 (D) and Nτ (D), which are useful for establishing
converse results later.

Lemma C.1. For 0 ≤ D ≤ n,

Nτ (D) ≤
(
n+D − 1

D

)
. (C.3)

Proof. Let the number of permutations in Sn with at most k inversions be Tn(d) ,∑d
k=0Kn(k), where Kn(k) is defined in (9.1). Since X (Sn, dτ ) is a regular metric space,

Nτ (D) = Tn(D),

which is noted in several references such as [75]. An expression for Kn(D) (and thus
Tn(D)) for D ≤ n appears in [75] (see [123] also). The following bound is weaker but
sufficient in our context.

By induction, or [124], Tn(D) = Kn+1(D) when D ≤ n. Then noting that for k < n,
Kn(k) = Kn(k − 1) +Kn−1(k) [75, Section 5.1.1] and for any n ≥ 2,

Kn(0) = 1, Kn(1) = n− 1, Kn(2) =

(
n

2

)
− 1,

by induction, we can show that when 1 ≤ k < n,

Kn(k) ≤
(
n+ k − 2

k

)
. (C.4)
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The product structure of X (Sn, dx,`1) leads to a simpler analysis of the upper bound
of Nx,`1 (D).

Lemma C.2. For 0 ≤ D ≤ n(n− 1)/2,

Nx,`1 (D) ≤ 2min{n,D}
(
n+D

D

)
. (C.5)

Proof. For any σ ∈ Sn, let x = xσ ∈ Gn, then

|Bx,`1 (D)| =
D∑

r=0

|{y ∈ Gn : d`1 (x,y) = r}| .

Let d , |x− y|, and Q(n, r) be the number of integer solutions of the equation z1 + z2 +
. . .+ zn = r with zi ≥ 0, 0 ≤ i ≤ n, then it is well known [125, Section 1.2] that

Q(n, r) =

(
n+ r − 1

r

)
,

and it is not hard to see that the number of such d = [d1, d2, . . . , dn−1] that satis-
fies

∑n−1
i=1 di = r is upper bounded by Q(n − 1, r). Given x and d, at most m ,

min {D,n} elements in {yi, 0 ≤ i ≤ n} correspond to yi = xi ± di. Therefore, for any
x, |{y ∈ Gn : d`1 (x,y) = r}| ≤ 2mQ(n, r) and hence

|B`1(x, D)| ≤
D∑

r=0

2mQ(n, r) = 2m
(
n+D

D

)
.

Below we upper bound logNτ (D) and logNx,`1 (D) for small, moderate and large D
regimes in Lemmas C.3 to C.5 respectively.

Lemma C.3 (Small distortion regime). When D = anδ, 0 < δ ≤ 1 and a > 0 is a
constant,

logNτ (D)

≤
{
a(1− δ)nδ log n+O

(
nδ
)
, 0 < δ < 1

n
[
log (1+a)1+a

aa

]
+ o (n) , δ = 1

, (C.6)

logNx,`1 (D)

≤
{
a(1− δ)nδ log n+O

(
nδ
)
, 0 < δ < 1

n
[
2 + log (1+a)1+a

aa

]
+ o (n) , δ = 1

. (C.7)
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Proof. To upper bound Nτ (D), when 0 < δ < 1, we apply Stirling’s approximation to
(C.3) to have

log

(
n+D − 1

D

)

= n log
n− 1 +D

n− 1
+D log

n− 1 +D

D
+O (log n) .

Substituting D = anδ, we obtain (C.6). When δ = 1, the result follows from (9) in [126,
Section 4]. The upper bound on Nx,`1 (D) can be obtained similarly via (C.5).

Lemma C.4 (Moderate distortion regime). Given D = Θ
(
n1+δ

)
, 0 < δ ≤ 1, then

logNτ (D) ≤ logNx,`1 (D) ≤ δn log n+O (n) . (C.8)

Proof. Apply Stirling’s approximation to (C.5) and substitute D = Θ
(
n1+δ

)
.

Remark C.1. It is possible to obtain tighter lower and upper bounds for logNτ (D) and
logNx,`1 (D) based on results in [123].

Lemma C.5 (Large distortion regime). Given D = bn(n− 1) ∈ Z+, then

logNτ (D) ≤ logNx,`1 (D) ≤ n log(2ben) +O (log n) . (C.9)

Proof. Substitute D = bn(n− 1) into (C.5).

� C.2 Proofs on the relationships among distortion measures

Lemma C.6.

max
σ∈Sn,σ′∈Sn

d`1
(
σ, σ′

)
=
⌊
n2/2

⌋
.

Proof. Note that d`1 (σ, σ′) is maximized when σ = [1, 2, . . . , n] and σ = [n, n− 1, . . . , 1].
Therefore, when n is even,

max
σ∈Sn,σ′∈Sn

d`1
(
σ, σ′

)
=

{∑n/2
k=1(2k − 1) = n2/2 n is even,

∑(n−1)/2
k=1 2k = (n2 − 1)/2. n is odd.

� C.2.1 Proof of Theorem 9.1

Lemma C.7. For any π ∈ Sn, let σ be a permutation chosen uniformly from Sn, and
X`1 , d`1 (π, σ), then

E [X`1 ] =
n2 − 1

3
Var [X`1 ] =

2n3

45
+O

(
n2
)
. (C.10)

173



APPENDIX C

Proof.

E [X`1 ] =
1

n

n∑

i=1

n∑

j=1

|i− j| = 2

n

n∑

i=1

i∑

j=1

|i− j|

=
2

n

n∑

i=1

i−1∑

j′=0

j′ =
1

n

n∑

i=1

(i2 − i)

=
1

n

(
n∑

i=1

i2 −
n∑

i=1

i

)

=
1

n

(
2n3 + 3n2 + n

6
− n2 + n

2

)

=
n2 − 1

3
.

And Var [X`1 ] can be derived similarly [112, Table 1].

Proof for Theorem 9.1. For any c > 0, cn · d`∞ (π, σ) ≤ cn(n − 1), and for any c1 <
1/3, Lemma C.7 and Chebyshev inequality indicate P [d`1 (π, σ) < c1n(n− 1)] = O(1/n).
Therefore,

P [d`1 (π, σ) ≥ c1n · d`∞ (π, σ)]

≥ P [d`1 (π, σ) ≥ c1n(n− 1)]

= 1− P [d`1 (π, σ) < c1n(n− 1)]

= 1−O (1/n) .

� C.2.2 Proof of Theorem 9.3

Lemma C.8. For any two permutations π, σ in Sn such that dx,`1 (π, σ) = 1, dτ (π, σ) ≤
n− 1.

Proof. Let xπ = [a2, a3, . . . , an] and xσ = [b2, b3, . . . , bn], then without loss of generality,
we have for a certain 2 ≤ k ≤ n,

ai =

{
bi i 6= k

bi + 1 i = k.

Let π′ and σ′ be permutations in Sn−1 with element k removed from π and σ correspond-
ingly, then xπ′ = xσ′ , and hence π′ = σ′. Therefore, the Kendall tau distance between σ
and π is determined only by the location of element k in σ and π, which is at most n−1.

Proof of Theorem 9.3. It is known that (see, e.g., [127, Lemma 4])

d`1(xπ1 ,xπ2) ≤ dτ (π1, π2).
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Furthermore, the proof of [127, Lemma 4] indicates that for any two permutation π1 and
π2 with k = dx,`1 (π1, π2), let σ0 , π1 and σk , π2, then there exists a sequence of
permutations σ1, σ2, . . . , σk−1 such that dx,`1 (σi, σi+1) = 1, 0 ≤ i ≤ k − 1. Then

dτ (π1, π2) =

k−1∑

i=0

dτ (σi, σi−1)

(a)

≤
k−1∑

i=0

(n− 1) = (n− 1)dx,`1 (π1, π2) ,

where (a) is due to Lemma C.8.

� C.2.3 Proof of Theorem 9.4

To prove Theorem 9.4, we analyze the mean and variance of the Kendall tau distance and
inversion-`1 distance between a permutation in Sn and a randomly selected permutation,
in Lemma C.9 and Lemma C.10 respectively.

Lemma C.9. For any π ∈ Sn, let σ be a permutation chosen uniformly from Sn, and
Xτ , dτ (π, σ), then

E [Xτ ] =
n(n− 1)

4
, (C.11)

Var [Xτ ] =
n(2n+ 5)(n− 1)

72
. (C.12)

Proof. Let σ′ be another permutation chosen independently and uniformly from Sn, then
we have both πσ−1 and σ′σ−1 are uniformly distributed over Sn.

Note that Kendall tau distance is right-invariant [111], then dτ (π, σ) = dτ
(
πσ−1, Id

)

and dτ (σ′, σ) = dτ
(
σ′σ−1, Id

)
are identically distributed, and hence the result follows [112,

Table 1] and [75, Section 5.1.1].

Lemma C.10. For any π ∈ Sn, let σ be a permutation chosen uniformly from Sn, and
Xx,`1 , dx,`1 (π, σ), then

E [Xx,`1 ] >
n(n− 1)

8
,

Var [Xx,`1 ] <
(n+ 1)(n+ 2)(2n+ 3)

6
.

Proof. It is not hard to see that when σ is a permutation chosen uniformly from Sn, xσ(i)
is uniformly distributed in [0 : i], 1 ≤ i ≤ n − 1. Therefore, Xx,`1 =

∑n−1
i=1 |ai − Ui| ,

where Ui ∼ Unif ([0 : i]) and ai , xπ (i). Let Vi = |ai − Ui|, m1 = min {i− ai, ai} and
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m2 = max {i− ai, ai}, then

P [Vi = d] =





1/(i+ 1) d = 0

2/(i+ 1) 1 ≤ d ≤ m1

1/(i+ 1) m1 + 1 ≤ d ≤ m2

0 otherwise.

Hence,

E [Vi] =

m1∑

d=1

d
2

i+ 1
+

m2∑

d=m1+1

d
1

i+ 1

=
2(1 +m1)m1 + (m2 +m1 + 1)(m2 −m1)

2(i+ 1)

=
1

2(i+ 1)
(m2

1 +m2
2 + i)

≥ 1

2(i+ 1)

(
(m1 +m2)2

2
+ i

)
=
i(i+ 2)

4(i+ 1)
>
i

4
,

Var [Vi] ≤ E
[
V 2
i

]
≤ 2

i+ 1

i∑

d=0

d2 ≤ (i+ 1)2.

Then,

E [Xx,`1 ] =
n−1∑

i=1

E [Vi] >
n(n− 1)

8
,

Var [Xx,`1 ] =

n−1∑

i=1

Var [Vi] <
(n+ 1)(n+ 2)(2n+ 3)

6
.

With Lemma C.9 and Lemma C.10, now we show that the event that a scaled version
of the Kendall tau distance is larger than the inversion-`1 distance is unlikely.

Proof for Theorem 9.4. Let c2 = 1/3, let t = n2/7, then noting

t = E [c ·Xτ ] +
∣∣Θ
(√
n
)∣∣Std [Xτ ]

= E [Xx,`1 ]−
∣∣Θ
(√
n
)∣∣ Std [Xx,`1 ] ,

by Chebyshev inequality,

P [c ·Xτ > Xx,`1 ] ≤ P [c ·Xτ > t] + P [Xx,`1 < t]

≤ O (1/n) +O (1/n) = O (1/n) .

The general case of c2 < 1/2 can be proved similarly.
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� C.3 Proofs on the rate distortion functions

� C.3.1 Proof of Theorem 9.5

Proof. Statement 1 follows from (9.8).
Statement 2 and 3 follow from Theorem 9.2. For statement 2, let the encoding mapping

for the (n,Dn) source code in X (Sn, d`1) be fn and the encoding mapping in X (Sn, dτ )
be gn, then

gn(π) =
[
fn(π−1)

]−1

is a (n,Dn) source code in X (Sn, dτ ). The proof for Statement 3 is similar.
Statement 4 follow directly from (9.11).
For Statement 5, define

Bn(π) , {σ : c1 · n · d`∞ (σ, π) ≤ d`1 (σ, π)} ,

then Theorem 9.1 indicates that

|Bn(π)| = (1−O (1/n))n!.

Let C̄′n be the (n,Dn) source code for X (Sn, dx,`1), πσ be the codeword for σ in C′n, then
by Theorem 9.1,

E [d`∞ (πσ, σ)] =
1

n!

∑

σ∈Sn
d`∞ (σ, πσ)

=
1

n!


 ∑

σ∈Bn(πσ)

d`∞ (σ, πσ) +
∑

σ∈Sn\Bn(πσ)

d`∞ (σ, πσ)




≤ 1

n!


 ∑

σ∈Bn(πσ)

d`1 (σ, πσ) +
∑

σ∈Sn\Bn(πσ)

n




≤ Dn/(nc1) +O (1/n)n = Dn/(nc1) +O (1) .

For Statement 6, similar to the proof of statement 5, define

An(π) , {σ : c2 · dτ (σ, π) ≤ dx,`1 (σ, π)}

then Theorem 9.4 indicates that |An(π)| = (1−O (1/n))n!. Let C̄′n be the (n,Dn) source
code for X (Sn, dx,`1) and σ be a permutation chosen uniformly from Sn, then let πσ be
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the codeword for σ in C̄′n,

E [dτ (πσ, σ)]

=
1

n!

∑

σ∈Sn
dτ (σ, πσ)

=
1

n!


 ∑

σ∈An(πσ)

dτ (σ, πσ) +
∑

σ∈Sn\An(πσ)

dτ (σ, πσ)




≤ 1

n!


 ∑

σ∈An(πσ)

dx,`1 (σ, πσ) /c2 +
∑

σ∈Sn\An(πσ)

n2/2




≤ Dn/c2 +O (1/n)n2 = Dn/c2 +O (n) .

� C.3.2 Proof of Theorem 9.6

We prove Theorem 9.6 by achievability and converse.

Achievability

The achievability for all permutation spaces of interest under both worst-case distortion
and average-case distortion are established via the explicit code constructions in Sec-
tion 9.5.

Converse

For the converse, we show by contradiction that under average-case distortion, if the rate
is less than 1 − δ, then the average distortion is larger than Dn. Therefore, R̄ ≥ 1 − δ,
and hence R̂ ≥ R̄ ≥ 1− δ.

When δ = 1, R̄ = R̂ = 0. When 0 ≤ δ < 1, for any 0 < ε < 1 − δ and any codebook
C̄n with size such that

log
∣∣C̄n
∣∣ = (1− δ − ε)n log n+O (n) , (C.13)

from (9.6), when Dn = Θ
(
n1+δ

)
or Dn = O (n),

N`1 (2Dn)
∣∣C̄n
∣∣ ≤ Nτ (2Dn)

∣∣C̄n
∣∣ ≤ Nx,`1 (2Dn)

∣∣C̄n
∣∣ (a)

≤ n!/2;

when Dn = Θ
(
nδ
)

or Dn = O (1),

N`∞ (2Dn)
∣∣C̄n
∣∣ ≤ Nx,`1 (2Dnn)

∣∣C̄n
∣∣ ≤ n!/2

when n sufficiently large, where (a) follows from (C.8).
Therefore, given C̄n, there exists at least n!/2 permutations in Sn that has distortion

larger than 2Dn, and hence the average distortion w.r.t. uniform distribution over Sn is
larger than Dn.

Therefore, for any codebook with size indicated in (C.13), we have average distortion
larger than Dn. Therefore, any (n,Dn) code must satisfy R̂ ≥ R̄ ≥ 1− δ.
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� C.4 Proofs on Mallows Model

� C.4.1 Proof of Lemma 9.13

Proof. When q = 1 the Mallows model reduces to the uniform distribution on the permu-
tation space. When q 6= 1, let Xn = [X1, X2, . . . , Xn] be the inversion vector, and denote
a geometric random variable by G and a geometric random variable truncated at k by Gk.
Define

Ek =

{
0 G ≤ k
1 o.w.

,

then P [Ek = 0] = Qk = 1− qk+1. Note

H (Gk, E) = H (G|Ek) +H (Ek)

= H (Ek|G) +H (G)

= H (G)

and

H (G|Ek) = H (G|Ek = 0)Qk

+H (G|Ek = 1) (1−Qk)
= H (Gk)Qk +H (G) (1−Qk),

we have

H (Gk) = Hb (q) /(1− q)−Hb (Qk) /Qk.

Then

H (M(q)) =
n−1∑

k=0

H (Gk)

=
nHb (q)

1− q −
n∑

k=1

Hb

(
qk
)

1− qk .

It can be shown via algebraic manipulations that

n∑

k=1

Hb

(
qk
)
≤ 2q − q2

(1− q)2
= Θ (1) ,

therefore

H (M(q)) =
nHb (q)

1− q −Θ (1) .
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� C.4.2 Proof of Lemma 9.14

We first show an upper bound Kn(k) (cf. (9.1) for definition), the number of permutations
with k inversion in Sn.

Lemma C.11 (Bounds on Kn(k)). For k = cn,

Kn(k) ≤ 1√
2πnc/(1 + c)

2n(1+c)Hb(1/(1+c)).

Proof. By definition, Kn(k) equals to the number of non-negative integer solutions of the
equation z1 + z2 + . . . + zn−1 = k with 0 ≤ zi ≥ i, 1 ≤ i ≤ n − 1. Then similar to the
derivations in the proof of Lemma C.2,

Kn(k) < Q(n− 1, k) =

(
n+ k − 2

k

)
.

Finally, applying the bound [128]

(
n

pn

)
≤ 2nHb(p)√

2πnp(1− p)

completes the proof.

Proof of Lemma 9.14. Note

dτ (σ, Id) = dx,`1 (σ,0) .

Therefore,

∑

σ∈Sn,dτ (σ,Id)≥r0
P [σ] =

1

Zq

(n2)∑

r=r0

qrKn(r).

And Lemma C.11 indicates for any r = cn,

qrKn(r) ≤ 2
n
[
(1+c)Hb( 1

1+c)−c log2
1
q

]
√

2πnc/(1 + c)
.

Define

E(c, q) ,

[
(1 + c)Hb

(
1

1 + c

)
− c log2

1

q

]
,
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then for any ε > 0, there exits c0 such that for any c ≥ c0(q), E(c, q) < −ε. Therefore, let
r0 ≥ c0n,

∑

σ∈Sn,dτ (σ,Id)≥r0
P [σ] ≤ 1√

2πnc/(1 + c)

1

Zq

(n2)∑

r=r0

2−nε

→ 0

as n→∞.
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