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Wavelet-Based Representations for a
Class of Self-Similar Signals with
Application to Fractal Modulation
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Abstract—A potentially important family of self-similar sig-
nals is introduced based upon a deterministic scale-invariance
characterization. These signals, which are referred to as ‘“dy-ho-
mogeneous’’ signals because they generalize the well-known
homogeneous functions, have highly convenient representations
in terms of orthonormal wavelet bases. In particular, wavelet
representations can be exploited to construct orthonormal
““self-similar’’ bases for these signals. The spectral and fractal
characteristics of dy-homogeneous signals make them appealing
candidates for use in a number of applications. As one potential
example, we consider their use in a communications-based con-
text. Specifically, we develop a strategy for embedding informa-
tion into a dy-homogeneous waveform on multiple time-scales.
This multirate modulation strategy, which we term ‘‘fractal
modulation,’’ is potentially well-suited for use with noisy chan-
nels of simultaneously unknown duration and bandwidth. Com-
putationally efficient modulators and demodulators are sug-
gested for the scheme, and the results of a preliminary perfor-
mance evaluation are presented. Although not yet a fully devel-
oped protocol, fractal modulation represents a potentially viable
paradigm for communication.

Index Terms—Fractals, wavelets, modulation theory, spread
spectrum.

1. INTRODUCTION

IGNALS with self-similar properties, i.e., signals which
retain many of their essential characteristics under time
scaling arise frequently in physical processes and also are
potentially important in signal generation for communica-
tions, remote sensing, and many other applications. The most
extensively studied class of such signals are those random
processes which exhibit statistical self-similarity, e.g., pro-
cesses whose autocorrelation functions remain invariant to
within an amplitude factor under arbitrary scalings of the
time axis. An important family of such random processes are
typically referred to as 1/f processes. These processes are
often used in modeling natural landscapes, the distribution of
earthquakes, ocean waves, turbulent flow, the pattern of
errors on communication channels, and many other natural
phenomena.
In this paper, we consider signals that exhibit deferminis-
tic self-similarity, whereby the signal itself remains invariant
to within an amplitude factor under arbitrary scaling of the
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time axis. This class of signals, referred to as homogeneous
signals [1], is fairly restricted. However, by generalizing the
class of homogeneous signals to require self-similarity only
under time scaling by integer powers of two, a family of
signals results with potential use as waveforms in a range of
engineering applications. As an example of one promising
direction for applications, we consider the use of generalized
homogeneous signal sets in a communications-based context.
Specifically, we develop an approach for embedding informa-
tion into homogeneous waveforms that we term *‘fractal
modulation.”” Because the resulting waveforms have the
property that the information is contained within multiple
time scales and frequency bands, we are able to show that
such signals are well-suited for transmission over noisy chan-
nels of simultaneously unknown duration and bandwidth.
This a reasonable model not only for many physical chan-
nels, but also for the receiver constraints inherent in many
point-to-point and broadcast communication scenarios. While
this proposed modulation scheme is very preliminary and
there are many unresolved issues to be explored, it is sugges-
tive of potential ways in which homogeneous signals can
perhaps be exploited.

Our approach to the analysis and representation of these
generalized homogeneous signals is based on the use of
orthonormal wavelet bases. These bases, which have the
property that all basis functions are dilations and translations
of some prototype function, are in many respects ideally
suited for use with self-similar signals [2]. Furthermore,
because wavelet transformations can be implemented in a
computationally efficient manner, the wavelet transform is
not only a theoretically important tool, but a practical one as
well.

In Section II, we briefly summarize the notation and
properties of wavelet bases to be used in the remainder of the
paper. Section III introduces and develops the generalized
family of homogeneous signals defined in terms of a dyadic
scale-invariance property. We distinguish between two
classes: energy-dominated and power-dominated, and de-
velop their spectral properties. We show that orthonormal
self-similar bases can be constructed for these signals using
wavelets. Using these representations, we then derive effi-
cient discrete-time algorithms for synthesizing and analyzing
such signals. Section IV develops the concept of fractal
modulation. In particular, we use the orthonormal self-simi-
lar basis expansions derived in Section III to develop an
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approach for modulating information sequences onto homo-
geneous signals. After developing the corresponding optimal
receiver, we evaluate the performance of the resulting scheme
in the context of a particular channel model and make
comparisons to more traditional forms of modulation. Fi-
nally, Section V summarizes the principal contributions of
the paper and suggests some interesting and potentially im-
portant directions for future research.

II. WAVELET NoTATION

In this section, we establish the notational conventions and
terminology for the aspects of wavelet theory we shall exploit
in this paper. For a more general review of the theory of
orthonormal wavelet bases, see, e.g., the classic references
(31, [4].

An orthonormal wavelet transformation of a signal x(7) is
described in terms of the synthesis /analysis equations’

x(1) = X T () (12

=]

[ xtwra (1b)

and has the special property that the orthogonal basis func-
tions are all dilations and translations of a single function
referred to as the basic wavelet y(¢). In particular,

va'(1) = 272927t - n), ()

where m and n are the dilation and translation indices,
respectively.

The Fourier transform of the basic wavelet, denoted ¥ (w),
often has a bandpass character, at least roughly. As a conse-
quence, wavelet decompositions may be interpreted rather
naturally in terms of a critically sampled generalized con-
stant-Q or octave-band filter bank. In fact, an example of a
wavelet basis, and one which will play an important role in
this paper, is the ideal bandpass wavelet basis. In this specific
case, the Fourier transform of the wavelet, which we denote
by ¥(w), is

\f/(w):{l’ T<|w| <27,
0, otherwise.

X, =

®3)

In many applications, it is useful to impose some degree of
regularity on the wavelet basis. As is well known [4], a
sufficient condition for a wavelet basis to possess Rth-order
regularity

¥(0) ~O(|w|™F),

where R is some positive integer, is that the wavelet have R
vanishing moments, i.e.,

lwl—bm’

-3

/ t(t)di = (/) ¥O0) =0, r=0.1, - R-1.
Many examples of wavelets with such regularity have been
developed in the literature; see, e.g., [4].

A broad class of orthonormal wavelet bases may also be

1 .
We shall assume throughout that all summations over m and n extend
from ~ o to o unless otherwise noted.

conveniently interpreted in terms of multiresolution signal
analysis. Associated with each such wavelet basis is a corre-
sponding scaling function ¢(#) having a Fourier transform
®(w) that is at least roughly lowpass. The scaling function
associated with the ideal bandpass wavelet basis, in fact, has
an ideal lowpass Fourier transform

1, |w| =,
(w) = .
0, otherwise.

(=

A resolution-limited approximation A, x(¢) to a signal
x(¢) in which details on scales 2" and finer are discarded is
obtained via the orthonormal expansion

Anx(1) = 3 ayer(t),

n

(4)
where the ¢'(¢) are also all dilations and translations of one
another, viz.,

o7 (1) =2m%¢(2™t — n),
and where the coefficients a); are obtained by projection:

@ = ]m x(£)or (1) dt.

— o0

(5)

For these signal approximations, the detail signal D, x(z)
capturing the information in x(f) between scales 2” and
2™*1 has the orthonormal expansion

Dpx(t) = Apyr x(2) = A, x(1) = 3 x9(1).

The multiresolution signal analysis interpretation of wavelet
bases also leads to efficient discrete-time algorithms for im-
plementing wavelet transformations. In particular, associated
with every wavelet-based multiresolution analysis is a
quadrature mirror filter (QMF) pair whose unit-sample re-
sponses h[n] and g[n] have at least roughly low-pass and
high-pass discrete-time Fourier transforms H(w) and G(w),
respectively. These filters are exploited in the following
filter-downsample analysis algorithm

ay =3 h[l-2n]ar+t, (6a)
!

xp =3 gll~2n]ap+t, (6b)
1

which may be applied recursively to extract the wavelet

coefficients x;" at successively coarser scales. In a comple-

mentary manner, the following upsample-filter-merge synthe-

sis algorithm

apt! = ; {h[n—21]a + g[n - 20]x"} (6c)

may be applied recursively to reconstruct the coefficients ay
of an increasingly fine-scale approximation to a signal x(r).
Collectively, (6) constitute what has become known as the
discrete wavelet transform (DWT).

III. DETERMINISTICALLY SELF-SIMILAR SIGNALS
Signals x(t) satisfying the deterministic scale-invariance

property
x(t) = a x(ar),

™
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for all a > 0, are generally referred to in mathematics as
homogeneous functions of degree H. As shown by Gel’fand
[1], homogeneous functions can be parameterized with only a
few constants. As such, they constitute a rather limited class
of signal models in many contexts.

A comparatively richer class of signal models is obtained
by considering waveforms which are required to satisfy (7)
only for values of & that are integer powers of two, i.e.,
signals that satisfy the dyadic self-similarity property

x(t) =27 x(2ky),

(3)

for all integers k. While we shall use the generic term
‘‘homogeneous signal’® to refer to signals satisfying (8),
when there is risk of confusion in our subsequent develop-
ment we will specifically refer to signals satisfying (8) as
dy-homogeneous.

Homogeneous signals have spectral characteristics very
much like those of 1/f processes and, in fact, have fractal
properties as well. Specifically, although all nontrivial homo-
geneous signals have infinite energy and many have infinite
power, there are nevertheless some such signals with which
one can associate a generalized 1/ f-like Fourier transform,
and others with which one can associate a generalized 1/ f-like
power spectrum. We distinguish between these two classes of
homogeneous signals in our subsequent treatment, denoting
them energy-dominated and power-dominated homoge-
neous signals, respectively. As we develop in Sections III-A
and III-B, orthonormal wavelet basis expansions constitute
particularly convenient and efficient representations for these
two classes of signals.

A. Energy-Dominated Homogeneous Signals

Definition 1: A dy-homogeneous signal x(¢) is said to be
energy-dominated if when x(¢) is filtered by an ideal band-
pass filter with frequency response

B(w):{l’ T<|w| <2rT,
0 0, otherwise,

)

the resulting signal %,(¢) has finite-energy, i.e.,

<
/ X5(1) dt < .
— oo

The choice of passband edges at = and 27 in our defini-
tion is, in fact, somewhat arbitrary. In particular, substituting
in the definition any passband that includes one entire fre-
quency octave but does not include w = 0 or w = oo leads to
precisely the same class of signals. However, our particular
choice is sufficient and is made in anticipation of the repre-
sentation of this class of signals in terms of a wavelet basis.

The class of energy-dominated homogeneous signals in-
cludes both reasonably regular functions, such as the constant
Xx(#) = 1, the ramp x(¢) = ¢, the time-warped sinusoid x(r)
= cos [27 log, ], and the unit step function x(¢) = u(r), as
well as singular functions, such as x(t) = 6(¢) and its
derivatives. We denote by E¥ the collection of all energy-
dominated homogeneous signals of degree H. The following
theorem allows us to interpret the notion of spectra for such
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signals. A straightforward but detailed proof is provided in
Appendix A.

Theorem 1: When an energy-dominated homogeneous sig-
nal x(¢) of degree H is filtered by an ideal bandpass filter
with frequency response

<
B(w)= {17 wL< le = Wy, (10)
0, otherwise,

for arbitrary 0 < w, < wy < o, the resulting signal y(r)
has finite energy and a Fourier transform of the form

V(o) - { X(9)

0, otherwise,

w, < le = wy,

(11)

where X(w) is some function that is independent of w, and
wy and has octave-spaced ripple, i.e., for all integers k,

(12)

Since in this theorem X (w) does not depend on w L O Wy,
this function may be interpreted as the generalized Fourier
transform of x(¢). Furthermore, (12) implies that the gener-
alized Fourier transform of signals in EX obeys a 1/ f-like
(power-law) relationship, viz.,

o] X (w) = |2%0| X (2%w).

1

- lwIH«H‘

| X(w)]

We note that because (11) excludes w = 0 and w = oo, the
mapping
x(t) © X ()

is not one to one. As an example, x(¢) = 1 and x(t) = 2 are
both in E# for H = 0, yet both have X(w) = 0 for w > 0.
In order to accommodate this behavior in our subsequent
theoretical development, all signals having a common X (w)
will be combined into an equivalence class. For example, two
homogeneous functions JS(#) and g(#) are equivalent if they
differ by a homogeneous function whose frequency content is
concentrated at the origin, such as ¢ in the case that H is
an integer.

Because the dyadic self-similarity property (8) of dy-homo-
geneous signals is very similar to the dyadic scaling relation-
ship between basis functions in an orthonormal wavelet basis,
wavelets provide a particularly nice representation for this
family of signals. Specifically, with x(¢) denoting an
energy-dominated homogeneous signal, the expansion in an
orthonormal wavelet basis is

x(t) = ; Xn: x7yr(1) (13a)

xp= [ xour. (13b)

Since x(?) satisfies (8) and since y,(¢) satisfies (2), it easily
follows from (13b) that for homogeneous signals

xp = B7""xy,

(14)
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where

6 = 22H+1 =27,

(15)

Denoting x2 by g[n], (13a) then becomes

x(1) =3 > 87" q[n]y,(1), (16)
m n

from which we see that x(¢) is completely specified in terms
of g[n). We term g[n] a generating sequence for x(t)
since, as we shall see, this representation leads to techniques
for synthesizing useful approximations to homogeneous sig-
nals in practice.

Let us now specifically choose the ideal bandpass wavelet
basis, whose basis functions we denote by

vr(e) = 2m2 (2"t — n),

where J(t) is the ideal bandpass wavelet whose Fourier
transform is given by (3). If we sample the output ¥,(¢) of
the filter in Definition 1 at unit rate, we obtain the sequence
gln] = X;, where %" denotes the coefficients of expansion
of x(¢) in terms of the ideal bandpass wavelet basis. Since
Xo(?) in Definition 1 has the orthonormal expansion

%(1) = X aln]¥5(0) (1)

we have

[ wya- > ().

— oo

(18)

Consequently, a homogeneous function is energy-dominated,
if and only if its generating sequence in terms of the ideal
bandpass wavelet basis has finite energy, i.e.,

S @[n] <.

A convenient inner product between two energy-dominated
homogeneous signals f(¢) and g(#) can be defined as

oo [ Aosn a

where the signals f(#) and g,(¢) are the responses of the
bandpass filter (9) to f(¢) and g(¢), respectively. Exploiting
(17) we may more conveniently express this inner product in
terms of @[ n] and b[n], the respective generating sequences
of f(¢) and g(¢) under the bandpass wavelet basis, as
(/. &)y =2 a[n]b[n]. (19)
n
With this inner product, E*' constitutes a Hilbert space and
the induced norm on E¥ is

o

x|l = / w0 di= T @[],

(20)

One can readily construct ‘‘self-similar’> bases for E.
Indeed, the ideal bandpass wavelet (16) immediately provides
an orthonormal basis for E. In particular, for any x(¢)e

E*, we have the synthesis /analysis pair

x(t) = X 4[n]6;(0) (21a)
n
gln] = (x,61); (21b)
where one can easily verify that the basis functions
0,(1) =32 B0 (r) (22)
m

are self-similar, orthogonal, and have unit norm.

The fact that the ideal bandpass basis is unrealizable means
that (21) is not a practical mechanism for synthesizing or
analyzing homogeneous signals. However, more practical
wavelet bases are equally suitable for defining an inner
product for the Hilbert space E¥. In fact, we shall show that
a broad class of wavelet bases can be used to construct such
inner products, and that, as a consequence, some highly
efficient algorithms arise for processing homogeneous sig-
nals.

Not every orthonormal wavelet basis can be used to define
inner products for E. In order to determine which or-
thonormal wavelet bases can be used to define inner products
for E¥, we must determine for which wavelets (¢)

/m X(1)90(0) die 1*(Z)

— oo

x(t) = % ; B="2q[n]y"(1)eE".

q[n] =

That is, we seek conditions on a wavelet basis such that the
sequence

alnl = [ x(0(n) ar
has finite energy whenever the homogeneous signal x(f) is
energy-dominated, and simultaneously such that the homoge-
neous signal

x(1) = Zm: 2": B="Rq[n]y; (1)

is energy-dominated whenever the sequence g[#] has finite
energy. Our main result is presented in terms of the follow-
ing theorem. A proof of this theorem is provided in Ap-
pendix B.

Theorem 2: Consider an orthonormal wavelet basis such
that ¥(#) has R vanishing moments for some integer R = 1,
i.e.,

¥(0) = 0, (23)
and let

x(1) =323 B "Pq[n]yr(t)

be a dy-homogeneous signal whose degree H is such that
v = log,B8 =2H + 1satisfies0 <y < 2R — 1. Then x(¢)
is energy-dominated, if and only if g[#] has finite energy.

This theorem implies that we may choose for our Hilbert
space Ef from among a large number of inner products
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whose induced norms are all equivalent. In particular, for
any wavelet /(7) with sufficiently many vanishing moments,
we may define the inner product between two functions f(¢)
and g(t) in E¥ whose generating sequences are afn] and
b[n], respectively, as

(f. 8) = %:a[n]b[n]‘ (24)

Of course, this collection of inner products is almost surely
not exhaustive. Even for wavelet-based inner products, Theo-
rem 2 asserts only that the vanishing moment condition is
sufficient to ensure that the inner product generates an equiv-
alent norm. It seems unlikely that the vanishing moment
condition is a necessary condition.

The wavelet-based norms for E* constitute a highly con-
venient and practical collection from which to choose in
applications involving the use of homogeneous signals. In-
deed, each associated wavelet-based inner product leads im-
mediately to an orthonormal self-similar basis for E#: if
x(t) e E*| then

x(1) = 2 q[n]6(1) (25a)
qln] = (x,6]),, (25b)

where, again, the basis functions
0,(1) = 3. B8~y (1) (26)

are all self-similar, mutually orthogonal, and have unit norm.

Finally, we remark that wavelet-based characterizations
also give rise to a convenient expression for the generalized
Fourier transform of an energy-dominated homogeneous sig-
nal x(¢#). In particular, if we take the Fourier transform of
(16) we get, via some routine algebra,

X(w) = ¥ 27 HHImy (2-m4) 02 "),

m

(27)

where Q(w) is the discrete-time Fourier transform of g[n].
This spectrum is to be interpreted in the sense of Theorem 1,
i.e., X(w) defines the spectral content of the output of a
bandpass filter at every frequency w within the passband.

B. Power-Dominated Homogeneous Signals

Energy-dominated homogeneous signals have infinite en-
ergy. In fact, most have infinite power as well. However,
there are other infinite power homogeneous signals that are
not energy-dominated. In this section, we consider a more
general class of infinite-power homogeneous signals referred
to as power-dominated homogeneous signals which will find
application in Section IV. The definition and properties closely
parallel those for energy-dominated homogeneous signals.

Definition 2: A dy-homogeneous signal x(?) is said to be
power-dominated if when x(#) is filtered by an ideal band-
pass filter with frequency response (9) the resulting signal
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X,(¢) has finite power, i.e.,

T
lim L X5(t) dt < oo,
T 2T -7

The notation P* will be used to designate the class of
power-diminated homogeneous signals of degree H. More-
over, while our definition necessarily includes the energy
dominated signals, which have zero power, insofar as our
discussion is concerned they constitute a degenerate case.

Analogous to Theorem 1 for the energy-dominated case,
we can establish the following theorem describing the spec-
tral properties of power-dominated homogeneous signals.

Theorem 3: When a power-dominated homogeneous sig-
nal x(?) is filtered by an ideal band-pass filter with frequency
response (10), the resulting signal y(¢) has finite power and a
power spectrum of the form
2

1 T .
:{Sx(w)’ wL<|wlswU’ (28)
0, otherwise,

where S, (w) is some function that is independent of w, and
wy; and has octave-spaced ripple, i.e., for all integers &,
|w] 27418, (0) = |25 27418, (2%0).  (29)
The details of the proof of this theorem are contained in
Appendix C, although it is identical in style to the proof of its
counterpart, Theorem 1. Note that since S,(w) in the theo-
rem does not depend on w, or w,, this function may be
interpreted as the generalized power spectrum of x(¢). Fur-
thermore, the relation (29) implies that signals in P* have a
generalized time-averaged power spectrum that is 1/ f-like,
ie.,
1

lo]”

Si(w) ~ ; (30)
where, via (15), y =2H + 1.

Theorem 3 directly implies that a homgeneous signal x(?)
is power-dominated, if and only if its generating sequence
G[n] in the ideal bandpass wavelet basis has finite power,
ie.,

> ZL:Lciz[n] < .

5w 2L+ 1 ,22

Similarly we can readily deduce from the results of Section
III-A that, in fact, for any orthonormal wavelet basis with
sufficiently many vanishing moments R so that 0 < y < 2R
— 1, the generating sequence for a homogeneous signal of
degree H in that basis has finite power, if and only if the
signal is power-dominated. This implies that when we use
(25a) with such wavelets to synthesize a homogeneous signal
Xx(#) using an arbitrary finite power sequence g[n], we are
assured that x(f)eP”. Likewise, when we use (25b) to
analyze any signal x(f)e P, we are assured that g[n] has
finite power.

Remarks: Energy-dominated homogeneous signals of arbi-
trary degree H can be highly regular, at least away from
t = 0. In contrast, power-dominated homogeneous signals
typically have a fractal structure similar to the statistically
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self-similar 1/ f processes of corresponding degree H, whose
power spectra are also of the form (30) with v = 2H + 1.
One might reasonably conjecture that power-dominated ho-
mogeneous signals and 1/f processes of the same degree
also have identical Hausdorff-Besicovitch dimensions [51,
when defined. Indeed, despite their obvious structural differ-
ences, power-dominated homgeneous signals and 1/f pro-
cesses “‘look’ remarkably similar in a qualitative sense. This
is apparent in Fig. 1, where we depict the sample path of a
1/f process along side a power-dominated homgeneous sig-
nal of the same degree whose generating sequence has been
taken from a white random process. We stress that in Fig.
1(a), the self-similarity of the 1/f process is statistical, i.e.,
it does not satisfy (8) but its autocorrelation function does. In
Fig. 1(b), the self-similarity of the homogeneous signal is
deterministic. In fact, while the wavelet coefficients of homo-
geneous signals are identical from scale to scale to within an
amplitude factor, i.e.,

X, = B"""2q[n],

the wavelet coefficients of 1// processes have only the same
second-order statistics from scale to scale to within an ampli-
tude factor, i.e.,

E[x]x["] = 8~"o[n - 1],

for some function p[n] that is independent of m [2], [6].

Finally, we remark that not all power-dominated homoge-
neous signals have spectra that are bounded on © < w < 2 7.
An interesting subclass of power-dominated homogeneous
signals with such unbounded spectra will, in fact, arise in our
development of fractal modulation. For these signals, ¥,(¢)
as defined in Definition 2 is periodic, so we refer to this
class of power-dominated homogeneous signals as periodic-
ity-dominated. It is straightforward to establish that these
homogeneous signals have the property that when passed
through an arbitrary bandpass filter of the form (10) the
output is periodic as well. Furthermore, their power spectra
consist of impulses whose areas decay according to a
1/|w|™ relationship. An important class of periodicity-
dominated homogeneous signals can be generated through a
wavelet-based synthesis of the form (16) in which the gener-
ating sequence g[#] is periodic.

C. Discrete-Time Algorithms for Processing
Homogeneous Signals

Orthonormal wavelet representations provide some useful
insights into homogeneous signals. For instance, because the
sequence g[#] is replicated at each scale in the representation
(16) of homogeneous signal x(¢), the detail signals

D, x(t) = B~ q[n]yr(t),

representing g[#] modulated into a particular octave band
are simply time-dilated versions of one another, to within an
amplitude factor. The corresponding time-frequency portrait
of a homogeneous signal is depicted in Fig. 2, from which
the scaling properties are apparent. For purposes of illustra-

600

0 200 400 800 1000
()
{
0 200 400 600 800 1000
(b)
Fig. 1. Comparison between the sample path of a 1/f process (a) and a

power-dominated homogeneous signal (). Both correspond to v = 1 (i.e.,
H =0).

tion, the signal in this figure has degree H = —1/2 (i.e.,
B = 1), which corresponds to the case in which g[n] is
scaled by the same amplitude factor in each octave band.
Clearly, the partitioning in such time-frequency portraits is
idealized: in general, there is both spectral and temporal
overlap between cells.

Wavelet representations also lead to some highly efficient
algorithms for synthesizing, analyzing, and processing homo-
geneous signals just as they do for 1/f processes as dis-
cussed in [7]. The signal processing structures we develop in
this section are a consequence of applying the DWT algo-
rithm to the highly structured form of the wavelet coefficients
of homogeneous signals.

We have already encountered one discrete-time representa-
tion for a homogeneous signal x(¢), namely that in terms of
a generating sequence g[n] that corresponds to the coeffi-
cients of the expansion of x(f) in an orthonormal basis
{6,7(¢)} for E. When the 67(¢) are derived from a wavelet
basis according to (26), another useful discrete-time represen-
tation for x(#) is available, which we now discuss.

Consider the coefficients @' characterizing the resolution-
limited approximation A, x(f) of a homogeneous signal
x(¢) with respect to a particular wavelet-based multiresolu-
tion signal analysis. Since these coefficients are the projec-
tions of x(¢) onto dilations and translations of the scaling
function ¢(¢) according to (5), it is straightforward to verify
that they, too, are identical at all scales to within an ampli-
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ql0] ql1] 9i2] al3] 9(4] q(5]

q(0]7 qll] ql2]

<zl P77 i

f———————————————————————

Fig. 2. Time-frequency portrait of a homogeneous signal (H = —1/2).

tude factor, i.e.,

am = p"-"m724°,

(31)

Consequently, the sequence @ is an alternative discrete-time
characterization of x(t), since knowledge of it is sufficient to
reconstruct x(f) to arbitrary accuracy. For convenience, we
refer to @ as the characteristic sequence and denote it as
pln]. As is true for the generating sequence, the characteris-
tic sequence associated with x(¢) depends upon the particular
multiresolution analysis used; distinct multiresolution signal
analyses generally yield different characteristic sequences for
any given homogeneous signal. We shall require that the
wavelet associated with any multiresolution analysis we con-
sider have sufficiently many vanishing moments that it meets
the conditions of Theorem 2.

The characteristic sequence p[n] is associated with a
resolution-limited approximation to the corresponding homo-
geneous signal x(f). Specifically, p[n] represents unit-rate
samples of the output of the filter, driven by x(¢), whose
frequency response is the complex conjugate of ®(w). Be-
cause frequencies in the neighborhood of the spectral origin,
where the spectrum of x(¢) diverges, are passed by such a
filter, p[n] will often have infinite energy or, worse, infinite
power, even when the generating sequence g[n] has finite
energy.

The characteristic sequence can, in fact, be viewed as a
discrete-time homogeneous signal, and a theory can be
developed following an approach directly analogous to that
used in Sections III-A and III-B for the case of continuous-
time homogeneous signals. The characteristic sequence satis-
fies the discrete-time self-similarity relation®

B'p[n] = zkj h[k —2n] p[£], (32)

which is readily obtained by substituting for a; in the DWT

? Relations of this type may be considered discrete-time counterparts of
the dilation equations considered by Strang in [8].
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analysis equation (6a) using (31) and that a(,), = p[n]. Indeed,
as depicted in Fig. 3, (32) is a statement that when p[n] is
low-pass filtered with the conjugate filter whose unit-sample
response is A[—n) and then downsampled, we recover an
amplitude-scaled version of p[n]. Although characteristic
sequences are, in an appropriate sense, ‘‘generalized se-
quences,”” when high-pass filtered with the corresponding
conjugate highpass filter whose unit-sample response is
g[ — n], the output is a finite energy or finite power sequence,
depending on whether p[n] corresponds to a homogeneous
signal x(¢) that is energy-dominated or power-dominated,
respectively. Consequently, we can analogously classify the
sequence p[n] as energy-dominated in the former case, and
power-dominated in the latter case. In fact, when the output
of such a high-pass filter is downsampled at rate two, we
recover the characteristic sequence g[#] associated with the
expansion of x(#) in the corresponding wavelet basis, i.e.,

B'%q[n] = Xk: glk - 2n]p[k]. (33)

This can be readily verified by substituting for @)} and xJ in
the DWT analysis equation (6b) using (31) and (14), and by
recognizing that ¢ = p[n] and x° = ¢[n].

From a different perspective, (33) provides a convenient
mechanism for obtaining the representation for a homoge-
neous signal x(#) in terms of its generating sequence g[n]
from one in terms of its corresponding characteristic se-
quence p[n], i.e.,

pln] = q[n].
To obtain the reverse mapping
a[n] = p[n]

is less straightforward. For an arbitrary sequence g[n], the
associated characteristic sequence p[#] is the solution to the
linear equation

8- 12p[n] - ; h[n - 2k] p[k] = Xk: gln—-2k]q[k],
(34)

as as can be verified by specializing the DWT synthesis
equation (6¢) to the case of homogeneous signals. There
appears to be no direct method for solving this equation.
However, the DWT synthesis algorithm suggests a conve-
nient and efficient iterative algorithm for constructing p[n]
from g[n]. In particular, denoting the estimate of p[n] on
the ith iteration by pl/l[n], the algorithm is

pOn] =0 (35a)
P0[n] = 87 3 {hln - 2k] K]
+g[n —2k]q[k]}. (35b)

This recursive upsample-filter-merge algorithm, depicted in
Fig. 4, can be interpreted as repeatedly modulating q[n]
with the appropriate gain into successively lower octave
bands of the frequency interval 0 < | w| < . Note that the
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Fig. 3. Discrete-time self-similarity identity for a characteristic sequence
pln}.

= plln)— hin] () plin]
—

Fig. 4. Interative algorithm for the synthesis of the characteristic sequence
pln] of a homogeneous signal x(#) from its generating sequence g[n].
Notation p!I[ n] denotes the value of p[n] at the ith iteration.

precomputable quantity
asn] = 5 g[n - 2k]q[k]

represents the sequence g[n] modulated into essentially the
upper half band of frequencies.

Any real application of homogeneous signals can ulti-
mately exploit scaling properties over only a finite range of
scales, so that it suffices in practice to modulate g[#] into a
finite range of contiguous octave bands. Consequently, only a
finite number of iterations of the algorithm (35) are ever
required. More generally, this also means that many of the
theoretical issues associated with homogeneous signals con-
cerning singularities and convergence do not present practical
difficulties in the application of these signals, as will be
apparent in our developments of Section IV.

Before turning to a potential application of homogeneous
signal sets, we mention that there would appear to be impor-
tant connections to be explored between the theory of self-
similar signals described here and the work of Barnsley, et
al., [9] on deterministically self-affine signals. Interestingly,
the recent work of Malassenet and Mersereau [10] has shown
that these signals, which are conveniently generated using
so-called “‘iterated function systems’’ have efficient represen-
tations in terms of wavelet bases as well.

IV. FRACTAL MobDULATION

In this section, we consider the use of homogeneous
signals as modulating waveforms in a communications-based
context as an example of the direction that some applications
may take. Beginning with an idealized but fairly general
channel model, we demonstrate that the use of homogeneous
waveforms in such channels is at least natural, if not optimal,
and leads to a multirate modulation strategy in which data is
transmitted simultaneously at multiple rates. While it is a
preliminary proposal, the modulation has a number of prop-
erties that seem appealing.

Our problem involves the design of a communication
system for transmitting a continuous- or discrete-valued data
sequence over a noisy and unreliable continuous-amplitude,

continuous-time channel. We must, therefore, design a modu-
lator at the transmitter than embeds the data sequence q[n]
into a signal x(¢) to be sent over the channel. At the
receiver, a demodulator must be designed for processing the
distorted signal r(¢) from the channel to extract an optimal
estimate of the data sequence g[n].

In a typical communication scenario, the channel would be
“‘open’’ for some time interval T, during which it has a
particular bandwidth W and signal-to-noise ratio (SNR).
Such a channel model can be used to capture both character-
istics of the transmission medium and constraints inherent in
one or more receivers. When the noise characteristics are
additive, the overall channel model is as depicted in Fig. 5,
where z(t) represents the noise process.

When either the bandwidth or duration parameters of the
channel are known a priori, there are many well-established
methodologies for designing an efficient and reliable commu-
nication system. However, we shall restrict our attention to
the case in which both the bandwidth and duration parame-
ters are either unknown or not available to the transmitter.
This case, by contrast, has received comparatively less atten-
tion in the communications literature, although it encom-
passes a range of both point-to-point and broadcast communi-
cation scenarios involving, for example, jammed and fading
channels, multiple access channels, covert and low probabil-
ity of intercept (LPI) communication, and broadcast commu-
nication to disparate receivers.

We shall require the communication system we design for
such channels to satisfy the following performance character-
1stics.

1) Given a duration-bandwidth product 7 x W that ex-
ceeds some threshold, we must be able to transmit qln]
without error in thee absence of noise, ie., z(t) = 0.

2) Given increasing duration-bandwidth product in excess
of this threshold, we must be able to transmit gl n) with
increasing fidelity in the presence of noise. Further-
more, in the limit of infinite duration-bandwidth prod-
uct, perfect transmission should be achievable at any
finite SNR.

The first of these requirements implies that, at least in
principle, we ought to be able to recover g[n] using arbitrar-
ily narrow receiver bandwidth given sufficient duration, or
alternatively, from an arbitrarily short duration segment given
sufficient bandwidth. The second requirement implies that we
ought to be able to obtain better estimates of g[ n] the longer
a receiver is able to listen, or the greater the bandwidth it has
available. Consequently, the modulation must contain redun-
dancy of a type that can be exploited for the purposes of error
correction. As we shall demonstrate, the use of homogeneous
signals for transmission appears to be rather naturally suited
to fulfilling both these system requirements.

The minimum achievable duration-bandwidth threshold in
such a system is a measure of the efficiency of the modula-
tion. Actually, because the duration-bandwidth threshold T
X W is a function of the length L of the data sequence, it is
more convenient to transform the duration constraint 7 into a
symbol rate constraint R = L /T and phrase the discussion
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z(t)

Fig. 5. Channel model for a typical communications scenario.

in terms of a rate-bandwidth threshold R / W that is indepen-
dent of sequence length. Then, the maximum achievable
rate-bandwidth threshold constitutes the spectral efficiency
of the modulation, which we shall denote by 7. The spectral
efficiency of a transmission scheme using bandwidth W is, in
fact, defined as

‘q = Rmax/W’

where R_ .. is the maximum rate at which perfect communi-
cation is possible in the absence of noise. Hence, the higher
the spectral efficiency of a scheme, the higher the rate that
can be achieved for a given bandwidth, or, equivalently, the
smaller the bandwidth that is required to support a given rate.

When the available channel bandwidth is known a priori,
a reasonably spectrally efficient, if impractical, modulation of
a data sequence g[n] involves expanding the sequence in
terms of an ideally bandlimited orthonormal basis. Specifi-
cally, with W, denoting the channel bandwidth, a transmitter
produces

x(t) = ; q[n] VW, sinc (Wyt — n),
where

1, t=0,
sinc () =

s otherwise.
wt

In the absence of noise, a receiver may recover g[n] from
the projections

a[n] = /o‘;x(t)\/Wosinc(WOt _ n)d,

which can be implemented as a sequence of filter-and-sample
operations. Since this scheme achieves a rate of R = W
symbols/sec using the double-sided bandwidth of W = W,
Hz, it is characterized by a spectral efficiency of
7o = 1 symbol /s /Hz. (36)

However, because the transmitter is assumed to have per-
fect knowledge of the rate-bandwidth characteristics of the
channel, this modulation does not constitute a viable solution
to our communications problem. Indeed, in order to accom-
modate a decrease in available channel bandwidth, the trans-
mitter would have to be accordingly reconfigured by decreas-
ing the parameter W,. Similarly, for the system to maintain a
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spectral efficiency of 5, = 1 when the available channel
bandwidth increases, the transmitter must be reconfigured by
correspondingly increasing the parameter W,. Nevertheless,
while not a solution to our communications problem, this
benchmark modulation provides a useful performance base-
line in evaluating the fractal modulation strategy we develop.

We now turn our attention to the problem of designing a
modulation strategy that maintains its spectral efficiency over
a broad range of rate-bandwidth combinations using a fixed
transmitter configuration. A rather natural solution to this
problem arises out of the concept of embedding the data to be
transmitted into a homogeneous signal. Due to the fractal
properties of the transmitted signals, we refer to the resulting
scheme as ‘‘fractal modulation.”’

A. Transmitter Design: Modulation

To embed a finite-power sequence g[n] into a dy-homoge-
neous waveform x(z) of degree H, it suffices to consider
using g[n] as the coefficients of an expansion in terms of a
wavelet-based orthonormal self-similar basis of degree H,

- X(1) = X alnlof(0),

where the basis functions 8,7(r) are constructed according to
(26). When the basis is derived from the ideal bandpass
wavelet, as we shall generally assume in our analysis, the
resulting waveform x(¢) is a power-dominated homogeneous
signal whose idealized time-frequency portrait has the form
depicted in Fig. 2. Consequently, we may view this as a
multirate modulation of g[n] where in the mth frequency
band g[n] is modulated at rate 2™ using a double-sided
bandwidth of 2” Hz. Furthermore, the energy per symbol
used in successively higher bands scales by 8~ ! = 27241,
Using a suitably designed receiver, g[n] can, in principle, be
recovered from x(¢) at an arbitrary rate 2" using a baseband
bandwidth of 2™*' Hz. Consequently, this modulation has a
spectral efficiency of

7 = (1/2) symbol/s/Hz.

We emphasize that in accordance with our channel model of
Fig. 5, it is the baseband bandwidth that is important in
defining the spectral efficiency since it identifies the highest
frequency available at the receiver.

While the spectral efficiency of this modulation is half that
of the benchmark scheme (36), this loss in efficiency is, in
effect, the price paid to enable a receiver to use any of a
range of rate-bandwidth combinations in demodulating the
data. Fig. 6 illustrates the rate-bandwidth trade-offs available
to the receiver. In the absence of noise the receiver can, in
principle, perfectly recover g[n] using rate-bandwidth com-
binations lying on or below the solid curve. The stepped
character of this curve reflects the fact that only rates of the
form 2™ can be accommodated, and that full octave increases
in bandwidth are required to enable g[n] to be demodulated
at successively higher rates. For reference, the performance
of our benchmark modulation is superimposed on this plot
using a dashed line. We emphasize that in contrast to fractal
modulation, the transmitter in the benchmark scheme re-
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Fig. 6. Spectral efficiency of fractal modulation. At each bandwidth B, the

solid curve indicates the maximum rate at which transmitted data can be
perfectly recovered in the absence of noise. Dashed curve indicates the
corresponding performance of the benchmark scheme.

quires perfect knowledge of the rate-bandwidth characteris-
tics of the channel.

Although it considerably simplifies our analysis, the use of
the ideal bandpass wavelet to synthesize the orthonormal
self-similar basis in our modulation strategy is impractical
due to the poor temporal localization in this wavelet. How-
ever, we may, in practice, replace the ideal bandpass wavelet
with one having not only comparable frequency domain
characteristics and better temporal localization, but suffi-
ciently many vanishing moments to ensure that the transmit-
ted waveform is power-dominated as well. Fortunately, there
are many suitable wavelets from which to choose, among
which are those due to Daubechies [4]. When such wavelets
are used, the exact spectral efficiency of the modulation
depends on the particular definition of bandwidth employed.
Nevertheless, using any reasonable definition of bandwidth,
we would expect to be able to achieve, in practice, a spectral
efficiency close to (1/2) symbols/s/Hz with this modulation,
and, as a result, we shall assume 7 =~ 1/2 in subsequent
analysis.

Another apparent problem with fractal modulation as ini-
tially proposed is that it requires infinite transmitter power.
Indeed, as Fig. 2 illustrates, g[n] is modulated into an
infinite number of octave-width frequency bands. However,
in a practical implementation, only a finite collection of
contiguous bands .# would, in fact, be used by the transmit-
ter. As a result, the transmitted waveform

x(0) = X gln] X 87"2y0(1) (37)

n me.A
would exhibit self-similarity only over a range of scales, and
demodulation of the data would be possible at one of only a
finite number of rates. In terms of Fig. 6, the rate-bandwidth

characteristic of the modulation would extend over a finite
range of bandwidths chosen to cover extremes anticipated for
the system.

The fractal modulation transmitter can be implemented in a
computationally highly efficient manner, since much of the
processing can be performed using the discrete-time algo-
rithms of Section III-C. For example, synthesizing the wave-
form x(t) given by (37) for #=1{0, 1,--+, M — 1} in-
volves two states. In the first stage, which involves only
discrete-time processing, g[n] is mapped into M consecutive
octave-width frequency bands to obtain the sequence p!™[ ).
The sequence is obtained using M iterations of the synthesis
algorithm (35) with the QMF filter pair h[n], g[n] appropri-
ate to the wavelet basis. The second state then consists of a
discrete- to continuous-time transformation in which p'™[ n]
is modulated into the continuous-time frequency spectrum via
the appropriate scaling function according to

*(1) = = P n] (1)

Xn: pM[n]2Mp(2Mt — n).

It is important to point out that because a batch-iterative
algorithm is employed, potentially large amounts of data
buffering may be required. Hence, while the algorithm may
be computationally efficient, it may be considerably less so in
terms of storage requirements. However, in the event that
gln] is finite length, it is conceivable that the algorithm may
be modified so as to be memory-efficient as well. Such
potential remains to be explored.

The transmission of finite length sequences using fractal
modulation more generally raises a variety of issues and,
therefore, requires some special consideration. In fact, as
initially proposed, fractal modulation is rather inefficient in
this case, in essence because successively higher frequency
band are increasingly underutilized. In particular, we note
from the time-frequency portrait in Fig. 2 that if g[n] has
finite length, e.g.,

g[n] =0,

then the mth band will complete its transmission of g[#] and
go idle in half the time it takes the (m — 1)st band, and so
forth. However, finite length messages may be accommo-
dated rather naturally and efficiently by modulating their
periodic extension g[n mod L] thereby generating a trans-
mitted waveform

x(t) = 5;‘ g[nmod L]6S(¢),

n<0, n>L-1,

which constitutes a periodicity-dominated homogeneous sig-
nal of the type discussed in Section III-B. If we let

g =1{q[0]q[1] - ¢[L - 1]}

denote the data vector, then the time-frequency portrait asso-
ciated with this signal is shown in Fig. 7. Using this enhance-
ment of fractal modulation, we not only maintain our ability
to make various rate-bandwidth tradeoffs at the receiver, but
we acquire a certain flexibility in our choice of time origin as
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Fig. 7. Portion of the time-frequency portrait of the transmitted signal for
fractal modulation of a finite-length data vector g. The case H = — 1/2 is
shown for convenience.

well. Specifically, as is apparent from Fig. 7, the receiver
need not begin demodulating the data at ¢ = 0, but may more
generally choose a time-origin that is some multiple of LR
when operating at rate R. Additionally, this strategy can, in
principle, be extended to accommodate data transmission on
a block-by-block basis.

The final aspect of fractal modulation that remains to be
considered in this section concerns the specification of the
parameter H. While H has no effect on the spectral effi-
ciency of fractal modulation, it does affect the power effi-
ciency of the scheme. Indeed, it controls the relative power
distribution between frequency bands and, hence, the overall
transmitted power spectrum, which takes the form (30) where
Y = 2H + 1. Consequently, the selection of H is important
when we consider the presence of additive noise in the
channel.

For traditional additive stationary Gaussian noise channels
of known bandwidth, the appropriate spectral shaping of the
transmitted signal is governed by a ‘‘water-filling’’ proce-
dure [11], [12], which is also the method by which the
capacity of such channels is computed [13]. Using this proce-
dure, the available signal power is distributed in such a way
that proportionally more power is located at frequencies
where the noise power is smaller.

When there is uncertainty in the available bandwidth, the
water-filling approach leads to poor worst-case performance.
As an example, for a channel in which the noise power is
very small only in some fixed frequency band 0 < w,; < Wy
< o, the water-filling recipe will locate the signal power
predominantly within this band. As a result, the overall SNR
in the channel will strongly depend on whether the channel
bandwidth is such that these frequencies are passed. By
contrast, the distribution of power according to a spectral-
matching rule that maintains an SNR that is independent of
frequency leads to a system whose performance is uniform
with variations in bandwidth and, in addition, is potentially
well-suited for LPI communication. Since power-dominated
homogeneous signals have a power spectrum of the form of
(30), the spectral-matching rule suggests that fractal modula-

795

tion may be naturally suited to channels with additive 1/f
noise whose degree H is the same as that of the transmitted
signal. This rather broad class of statistically self-similar
processes includes not only classical white Gaussian noise
(H = —1/2) and Brownian motion (H = 1/2), but more
generally, a range of rather prevalent nonstationary noises
which exhibit strong long-term statistical dependence [14].

In this section, we have developed a modulation strategy
that satisfies the first of the two system requirements de-
scribed at the outset of Section IV. In this next section, where
we turn our attention to the problem of designing optimal
receivers for fractal modulation, we shall see the fractal
modulation also satisfies the second of our system require-
ments.

B. Receiver Design: Demodulation

Consider the problem of recovering a finite length message
g[n] from band-limited, time-limited, and noisy observations
r(t) of the transmitted waveform x(¢) consistent with our
channel model of Fig. 5. We shall assume that the noise z(?)
is a Gaussian 1/f process of degree H, = H, and that the
degree H, of the homogeneous signal x(z) has been chosen
according to our spectral-matching rule, i.e.,

H =H, =H. (38)
We remark that if it is necessary that the transmitter measure
H, in order to perform this spectral matching, the robust and
efficient parameter estimation algorithms for 1/f processes
developed in [7] may be exploited.

Depending on the nature of the message being transmitted,
there are a variety of different optimization criteria from
which to choose in designing a suitable receiver. As a
representative example, we consider the case in which the
transmitted message is a random bit stream of length L
represented by a binary-valued sequence

qln] e{+VE, - VE},

where E, is the energy per bit. For this data, we develop a
receiver that demodulates g[#] so as to minimize the proba-
bility of a bit-error. Demodulation of non-binary discrete-val-
ued sequences is achieved using a straightforward extension
of our results, and demodulation of continuous-valued se-
quences under a minimum mean-square error criterion is
described in [2].

An efficient implementation of the optimum receiver pro-
cesses the observations r(¢) in the wavelet domain by first
extracting the wavelet coeflicients r]" using the DWT (6).
These coefficients take the form

rrt=p8"""2g[nmod L] + z", (39)
where the z)' are the wavelet coefficients of the noise
process, and where we have assumed that in accordance with
our discussion in Section IV-A the periodic replication of the
finite length sequence g[#] has been modulated. To simplify
our analysis, we shall further assume that the ideal bandpass
wavelet is used in the transmitter and receiver, although we
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reiterate that comparable performance can be achieved when
more practical wavelets are used.

The duration-bandwidth characteristics of the channel will
in general affect which observation coefficients r,” may be
accessed. In particular, if the channel is bandlimited to 2*v
Hz for some integer M, this precludes access to the coef-
ficients at scales corresponding to m > M,,. Simultaneously,
the duration-constraint in the channel results in a minimum
allowable decoding rate of 2+ symbols /sec for some integer
M, , which precludes access to the coefficients at sales corre-
sponding to m < M, . As a result, the collection of coeffi-
cients available at the receiver is

r=A{rl, med, neN(m)},
where
M= {M,, M, +1,--, M},
N (m) ={0,1,---, L2m M — 1},
This means that we have available

My

K= %

m=M;

2m—ML — 2MUAML+I -1

(40)

noisy measurements of each of the L nonzero samples of the
sequence g[n]. The specific relationship between decoding
rate R, bandwidth W, and redundancy K can, therefore, be
expressed in terms of the spectral efficiency of the modula-
tion 75 as

R 29g
W OK+1’

(41)

where, as discussed earlier, 1, =~ 1/2. Note that M, = M,
when K = 1, and (41) attains its maximum value, 7.

The optimal decoding of each bit can be described in terms
of a binary hypothesis test on the set of available observation
coefficients r. Denoting by H, the hypothesis in which
qlnl = + \/E,, and by H, the hypothesis in which g[#]
= - \/1?0 » we may construct the likelihood ratio test for the
optimal decoding of each symbol g[n]. The derivation is
particularly straightforward because of the fact that, in accor-
dance with the wavelet-based models for 1/f processes
developed in [15], [7], [2], the z} in (39) may be modeled
as independent zero-mean Gaussian random variables with
variances

var z;' = o287,

(42)

for some variance parameter ¢ > 0. Consequently, the like-
lihood ratio test reduces to the test

My, am-Mi_ rm

Z Z n+iK \/E;OB¥”’/2 Hl

=0
2 7 -
m=M, 1=0 o 87" H,

| =

under the assumption of equally likely hypotheses, i.e., a
random bit stream. The bit-error probability associated with
this optimal receiver is, of course, readily derived, and can

be expressed as
1
Pr(e)zPr(1>0|H0)=Q(5\/KUCZ), (43)

where Q(-) is defined by

1 Ll
e V2 dv,
X /

P

and where ¢ is the SNR in the channel, i.e.,

Substituting for K in (43) via (41) we can rewrite this error
probability in terms of the channel rate-bandwidth ratio as

o 25 1)

where, again, np = 1/2. Note that the performance of fractal
modulation is independent of the spectral exponent of the
noise process when we use spectral matching.

To establish a performance baseline, we shall also evaluate
a modified version of our benchmark modulation in which we
incorporate repetition-coding, i.e., in which we add redun-
dancy by transmitting each sample of the message sequence
K times in succession. This comparison scheme is not partic-
ularly power efficient both because signal power is dis-
tributed uniformly over the available bandwidth irrespective
of the noise spectrum, and because much more effective
redundancy schemes can be used with channels of known
bandwidth (see, e.g., [16]). Nevertheless, with these caveats
in mind, such comparisons do lend some insight into the
relative power efficiency of fractal modulation.

In our modified benchmark modulation, incorporating re-
dundancy reduces the effective decoding rate per unit band-
width by a factor of X, i.e.,

R _m
w K’

27 _
R/ W

Pr(e) =

(44)

(45)

where 7, is the efficiency of the modulation without coding,
i.e., unity. When the channel adds stationary white Gaussian
noise, for which H = —1/2, the optimum receiver for this
scheme demodulates the received data and averages together
the K symbols associated with the transmitted bit, thereby
generating a sufficient statistic. When this statistic is positive
the receiver decodes a 1-bit, and a 0-bit otherwise. The
corresponding performance is, therefore, given by

Pr(9 - 0 Jaf_K):Q(l [R’}W]) (46)

2
where the last equality results from substituting for K via
(45).

Comparing (46) with (44), we note that since n, = 27,
the asymptotic bit-error performances of fractal modulation
and the benchmark scheme are effectively equivalent for
R /W < qg, as is illustrated in Fig. 8. In Fig. 8(a), Pr (e) is
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Fig. 8. Bit-error rate performance of fractal modulation. (a) Pr(e) as a
function of rate /bandwidth ratio R / W at 0 dB SNR. (b) Pr(e) as a function
of SNR at R /W = 0.1 symbols/s/Hz. Solid lines indicate the performance

of fractal modulation, while dashed lines indicate the performance of the
benchmark modulation with repetition coding.

shown as a function of R/W at a fixed SNR of 0 dB
(o7 = 1), while in Fig. 8(b), Pr (¢) is shown as a function of
SNR at a fixed R/W = 0.1 bits/s/Hz. Both these plots
reveal strong thresholding behavior whereby the error proba-
bility falls off dramatically at high SNR and low R/W. We
emphasize that comparisons between the two schemes are
appropriate only for the case in which the noise has parame-
ter H = —1/2, corresponding to the case of stationary white
Gaussian noise. For other values of H, the performance of
the benchmark modulation is not only difficult to evaluate,
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but necessarily poor as well because of inefficient distribution
of power among frequencies.

V. CoNcLUDING COMMENTS

We have developed convenient, efficient, and robust
wavelet-based representations for a generalized class of ho-
mogeneous signals, and explored their properties. Further-
more, we have explored their potential for use as modulating
waveforms in a communications-based application, and
demonstrated that fractal modulation would appear to be
well-suited for use with noisy channels of simultaneously
uncertain duration and bandwidth.

While our development of fractal modulation considered
many issues, many others, such as synchronization and
buffering, remain to be investigated. Furthermore, there are
many potential refinements to be explored. One might in-
volve the incorporation of block or trellis coding techniques
to improve the power efficiency of the modulation. It would
seem that coding of this type cannot be incorporated without
sacrificing properties of the transmission scheme. In particu-
lar, the simple redundancy scheme apparent in Fig. 7 enables
the recovery of a message ¢ from observations correspond-
ing to any single cell of the time-frequency plane. Neverthe-
less, it would be important to identify the trade-offs involved.

The potential of fractal modulation in LPI applications also
remains to be explored. While we have argued that the
second-order statistics of homogeneous signals are effectively
indistinguishable from those of 1/f noises, a more compre-
hensive study of the detectability of homogeneous signals is
warranted. In the process, some potentially useful extensions
to fractal modulation may arise. As an example, drawing
from the notions underlying direct-sequence spread spectrum,
one technique for more effectively concealing the modulation
from unintended receivers might involve premultiplying the
entire wavelet coefficient field x;" of the signal x(#) prior to
transmission by a pseudorandom bit field known to both
transmitter and receiver.

Finally, we remark that there would appear to be many
additional applications for the self-similar signals we have
introduced in this paper. In many respects, identifying and
exploring other potentially promising applications represents
perhaps the most exciting direction for future research.
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APPENDIX A

ProOF OF THEOREM 1

To show that y(f) has finite energy, we exploit an equivalent
synthesis for y(f) as the output of a cascade of filters driven by
X(1), the first of which is an ideal bandpass filter whose passband
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includes w; < |w| < wy, and the second of which is the filter
given by (10).

Let b,(#) be the impulse response of a filter whose frequency
response is given by

o) = {

and let b(7) be the impulse response corresponding to (10). Further-
more, choose finite integers M, and M, such that 2.7 < w, and
wy < 2Mv*tlz. Then using the asterisk to denote convolution,

277 < |w| = 2™ g,

(47)
otherwise,

y(t) = b(1)*

sz bmmJ «x(1)

My

=b()* > X.(1),

m=M;

(48)
where

(1) =x(t)*b,(1) = 27"Hz,(2™), (49)

and where the last equality in (49) results from an application of the
self-similarity relation (8) and the identity

b, (£) =2"by(2™1).

Because x(?) is energy-dominated, ¥,(#) has finite energy. Hence,
(49) implies that every X,,(¢) has finite energy. Exploiting this fact
in (48) allows us to conclude that y(f) must have finite energy as
well.

To verify the spectrum relation (11), we express (48) in the
Fourier domain. Exploiting the fact that we may arbitrarily extend
the limits in the summation in (48), we get

Y(6) = B(s) 3

m=—o

Xm(©)

= 1 X(e),
0, otherwise,

w, < |w| <wy,

where X m(w) denotes the Fourier transform of X¥,(¢), and where

X(@) 2 Y % (a)

m= —co

(50)

The right-hand side of (50) is, of course, pointwise convergent
because for each w at most one term in the sum is nonzero. Finally,
exploiting (49) in (50) gives

X(w) = 3. 27mHEDE (27 my),

which, as one can readily verify, satisfies (12).

APPENDIX B

PrOOF OF THEOREM 2

To prové the “‘only if*’ statement, we suppose x(¢)€E* and
being by expressing x(¢) in terms of the ideal bandpass wavelet
basis {y,)"(£)}. In particular, we let

x(1) = X x,(1),

m

where
X, (1) =p~"" Z aln]¥; (1)

and where g[n], the generating sequence in this basis, has energy

E < o, The new generating sequence g[#] can then be expressed
as

alnl = % alnl. (51)

where
qm[”] = ym(t) | t=n
and

Y1) = % (1) %9 (= 1).

For each m, since ¥,(f) is bandlimited, y,(¢) and g,[n] each
have finite energy and Fourier transforms - Y, (w) and Q,(w),
respectively. Hence,

Q.(w) = ; Y, (w—27k), (52)

where
Y, (w)
_ 1 @B) "M (w)0(2 "), 27 <|w|=2"t'x,
0, otherwise,

with Q(w) denoting the Fourier transform of G[n], and ¥*(w) the
complex conjugate of ¥(w).

In deriving bounds on the energy E,, in each sequence q,,[ 7] for
a fixed m, it is convenient to consider the cases m < —1 and
m = 0 separately. When m < —1, the sampling by which g,,[n] is
obtained involves no aliasing. Since on | w| < m we then have

Qm(“’) = Ym(“’) ’

we may deduce that g,,[ 7] has energy

E, E": | gm[n] 17

-2 /22’"+17,|\I/(w) 17102 ") |* dw. (53)

L T

Because y/(f) has R vanishing moments, there exists a 0 < ¢, < o
such that
¥ (@) selwl® (54)

for all w. Exploiting this in (53) we obtain

E,, < C2@R-1mE,

()

for some 0 < C, < .
Consider, next, the case corresponding to m = 0. Since ¥(?) has
R vanishing moments, there also exists a 0 < ¢; < oo such that
|¥(w)| <¢wl™" (56)
for all w. Hence, on 2"7 < |w| <2™*+'x,

| Yu(0) | = e R2m 0 1m20m2 | G(27mg) .

(57)
From (52), we obtain
| Qn()| = em-Ra-Cris2mms

27—

S 3 1002w+ 27k27™) |

k=0

(58)

by exploiting, in order, the triangle inequality, the bound (57), the
fact that only 2" terms in the summation in (52) are nonzero since
V() is bandlimited, and the fact that Q( w) is 2 w-periodic. In turn,
we may use, in order, (58), the Schwarz inequality, and again the
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periodicity of Q(w) to conclude that
Em < 6127|_—2R2—('y+1+2R)m

2

2m—1 1 T -
DY \/—/ Q2™ ™w + 27k2™ ") | * dw
k=0 27 J _,

< C12~(772+2R)mé’

(59)
for some 0 < C, < oo.

Using (51), the triangle inequality, and the Schwarz inequality,
we obtain the following bound on the energy in g[7]

E=Slaln] s [; m]z

which, from (59) and (55) is finite provided 0 < v < 2R and
R=1.

Let us now show the converse. Suppose g[#] has energy E < o,
and express x(t) as

(1) = L xn(1).
where
*n(1) = 8772 3 aln]ur(1).
If we let

Im(1) = bo(2) * x,(1).

where b(1) is the impulse response of the ideal bandpass filter (9),
it suffices to show that

HOEDIS M (60)
m
has finite energy.
For each m, we begin by bounding the energy in 7,.(t), which is

finite because x,(¢) has finite energy. Since 7,(t) has Fourier
transform

7, (s) = { (28) "o ") ¥ (27 ").  x<|uj< 27,
0, otherwise

where Q(w) is the discrete-time Fourier transform of qln], we get
that

. 27y

En= = [T o) 12140 )

s

Again, it is convenient to consider the cases corresponding to
m =< —1 and m = 0 separately. For m < —1, most of the energy
in x,,(?) is at frequencies below the passband of the bandpass filter.
Hence, using the bound (56) and exploiting the periodicity of Q(w)
we obtain

E, < C2@R-1-nmp,

(61)
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for some 0 < éo < o, For m = 0, most of the energy in x,(¢) is
at frequencies higher than the passband of the bandpass filter.
Hence, using the bound (54) we obtain

E, < G2 0F2RImg, (62)
for some 0 < C~'l < oo,
Finally, using (60), the triangle inequality, and the Schwarz

inequality, we obtain the following bound on the energy in ()
® 2
E:/ |ﬁ(t)[2dts[z \/E,,,],
— o m

which, from (62) and (61) is finite provided 0 < y < 2R — 1 since
R=1.

AppPENDIX C

PrOOF OF THEOREM 3

Following an approach analogous to the proof of Theorem 1, let
b,,(¢) be the impulse response of a filter whose frequency response
is given by (47), and let b(¢) be the impulse response corresponding
to (10). By choosing finite integers M, and M|, such that 271 <
w; and wy < 2Mu+le we can again express y(¢) in the form of
(48). Because x(?) is power-dominated, ¥,(f) has finite power.
Hence, (49) implies that every X,(f) has finite power. Exploiting
this fact in (48) allows us to conclude that y(f) must have finite
power as well.

To verify the spectrum relation (28), we use (48) together with

the fact that the ¥ ,(¢) are uncorrelated for different m to obtain

o

Z S}m(‘”)

m=— o

Sy(w) = | B(w)|?

- {Sx(w),

0, otherwise

w, < || <oy,

where S?m(‘*’) denotes the power spectrum of ¥,,(¢), and where

-

S(w) = 3 sy (o).

m= — oo

(63)

Again we have exploited the fact that the upper and lower limits on
the summation in (48) may be extended to o and — oo, respectively.
The right-hand side of (63) is, again, pointwise convergent because
for each w at most one term in the sum is nonzero. Finally,
exploiting (49) in (63) gives

S(w) = ; 2’7'"32“(27'"0))

which, as one can readily verify, satisfies (29).
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