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Communication Under Strong Asynchronism
Aslan Tchamkerten, Venkat Chandar, and Gregory W. Wornell, Fellow, IEEE

Abstract—A formulation of the problem of asynchronous
point-to-point communication is developed. In the system model
of interest, the message codeword is transmitted over a channel
starting at a randomly chosen time within a prescribed window.
The length of the window scales exponentially with the codeword
length, where the scaling parameter is referred to as the asynchro-
nism exponent. The receiver knows the transmission window, but
not the transmission time.

Communication rate is defined as the ratio between the mes-
sage size and the elapsed time between when transmission com-
mences and when the decoder makes a decision. Under this model,
several aspects of the achievable tradeoff between the rate of re-
liable communication and the asynchronism exponent are quanti-
fied. First, the use of generalized constant-composition codebooks
and sequential decoding is shown to be sufficient for achieving re-
liable communication under strictly positive asynchronism expo-
nents at all rates less than the capacity of the synchronized channel.
Second, the largest asynchronism exponent under which reliable
communication is possible, regardless of rate, is characterized. In
contrast to traditional communication architectures, there is no
separate synchronization phase in the coding scheme. Rather, syn-
chronization and communication are implemented jointly.

The results are relevant to a variety of sensor network and other
applications in which intermittent communication is involved.

Index Terms—Change detection, detection and isolation
problem, error exponents, intermittent communication, quickest
detection, sensor networks, sequential decoding, synchronization.

I. INTRODUCTION

I N the traditional communication system architecture, the
subsystem that encodes and decodes the bits to be com-

municated is designed and implemented separately from the
subsystem that establishes a synchronized channel (e.g., by
training). Such a separation is convenient, simplifying system
design, and allowing code designers to focus on coding for
synchronized channels. As a result, much information-theoretic
analysis starts with the assumption of perfect synchronization
between the transmitter and the receiver, and, indeed, many
key quantities, including channel capacity, are defined accord-
ingly [1].

However, in a variety of emerging applications involving in-
termittent or bursty communication, this architectural separa-
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tion is less easily justified, and a suitable analysis of the overall
problem of asynchronous communication—in which synchro-
nization and communication aspects are combined—is required.
In this paper, we propose and analyze a model for this problem,
and use information-theoretic analysis to quantify appropriate
notions of fundamental limits.

As a motivating application, consider, for example, a moni-
toring system in which a sensor will, on occasion, emit an alarm
message to a command center, but will otherwise remain idle.
The time at which an alarm is sent is determined by external
events (the phenomenon being monitored), and thus the under-
lying communication channel is inherently asynchronous. In
such an application, important parameters of the communica-
tion system are the message size (in bits), the “reaction delay”
in detecting the sent message, and the probability of a decoding
error.

In our simple point-to-point model, the message is encoded
into a codeword of fixed length, and this codeword starts being
sent at a time instant that is uniformly distributed over some pre-
defined transmission window. The size of this window is known
to both the transmitter and receiver, and governs the level of
asynchronism in the system. The receiver uses a sequential de-
coder to detect and identify the sent message.

In our model, the transmission window size scales exponen-
tially with the codeword length, where the scaling parameter
is referred to as the asynchronism exponent. This scaling is
rather natural. Indeed, if the window size scales subexponen-
tially, then the price of asynchronism is negligible. By contrast,
if the window size scales superexponentially, then the asyn-
chrony is generally catastrophic. Hence, exponential asynchro-
nism is the interesting regime.

In designing a suitable communication system, the goal is to
deliver as large a message as possible, as quickly as possible,
and as reliably as possible. These are, however, conflicting ob-
jectives in general, and thus we quantify the fundamental trade-
offs involved. Specifically, we first define communication rate as
the ratio between the message size and the delay between when
transmission starts and when the message is detected and de-
coded. We then describe the capacity region of an asynchronous
channel as the efficient frontier of fundamental tradeoffs be-
tween achievable rates and the asynchronism exponents for reli-
able communication, i.e., subject to the constraint of a vanishing
error probability in the limit of long codeword lengths.

In our analysis, we focus on discrete memoryless channels,
for simplicity of exposition. Using a coding scheme comprising
a random generalized constant-composition codebook and se-
quential decoding, we first develop sufficient conditions on the
parameters of the scheme for a rate–exponent pair to be achiev-
able. As an application of this result, we show that any rate
below the capacity of the synchronized system can be achieved
under some strictly positive asynchronism exponent.
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As our second result, we show there exists a synchronization
threshold for such channels. This threshold is the largest pos-
sible asynchronism exponent that can yield reliable communi-
cation when the message consists of at least one bit. We char-
acterize this threshold, which is a function of the underlying
channel law. As illustrations, we quantify the synchronization
threshold for both a basic binary symmetric channel, and for an-
tipodal signaling over an additive white Gaussian noise channel
with hard decision decoding.

An outline of the paper is as follows. Section II describes
some background and related work, to put the present contri-
butions in context, and Section III summarizes some notation
and other conventions we make use of throughout the paper.
Section IV formally develops our system, channel, and problem
model of interest, and Section V introduces a particular coding
scheme for asynchronous channels that we use to establish our
achievability results. Section VI summarizes and interprets our
main results, which take the form of two theorems, and a de-
velopment of these results is provided in Section VII. Finally,
Section VIII contains some concluding remarks.

II. RELATED MODELS AND PROBLEMS

There have been a variety of attempts to model and ana-
lyze different types of asynchronism in communication systems.
Some of the earliest work dates back to the 1960s. In one model
from that time [2], a stream of messages is encoded into a se-
quence of fixed-length codewords that are transmitted, one im-
mediately after the other. The receiver obtains channel outputs
beginning at a random point in time in the overall transmission.
The goal of the receiver is to detect the location of the next code-
word boundary and begin decoding all subsequent messages.

A somewhat different line of inquiry from that time period
is represented by the well-known insertion, deletion, and
substitution (IDS) channel model of Dobrushin [3], which
has seen renewed interest recently [4], [5]. The IDS channel
is aimed at modeling a different phenomenon than that of
this paper—namely, timing error and irregularity in a com-
munication medium and transceiver hardware. As such it is
complementary to our model. In particular, in the IDS model,
the time at which transmission begins is known to the receiver.
However, each time a symbol from the codeword is transmitted,
a string of symbols of variable length (possibly even length
zero) is received. As such, the channel is characterized by the
set of all conditional output distributions for each in
a finite alphabet , where is a string of some length (even
zero) of symbols from a finite alphabet .

With the IDS channel model, the duration of the transmis-
sion is random, but the receiver implicitly knows the timing of
the last output symbol. For instance, in the special case of the
deletion channel, where each input symbol is deleted with some
probability, if the codeword produces the output ,

, the receiver knows that nothing comes after time .1

By contrast, in our model the receiver knows neither the time
at which transmission starts, nor the timing of the last infor-
mation symbol. However, we do not model timing uncertainty

1In [3], Dobrushin discusses the assumption that the receiver implicitly knows
the length of the received sequence; see the discussion after Theorem 1. To avoid
this assumption, beyond “one-shot” communication, Dobrushin also analyzes
the situation where an infinite sequence of messages are sent and sequentially
decoded on the basis of stopping times.

during the information transmission—the duration of the trans-
mission is always equal to a codeword length. It is also worth
remarking that, in contrast to our model, the intuitive notion of
“asynchronism level” for a channel is more difficult to capture
succinctly with the IDS model since any reasonable such notion
would depend on the associated channel transition probabilities.

A second kind of asynchronism is that between users in a mul-
tiuser communication setting, a particular example of which is
the multiple-access problem. Examples of information-theoretic
analysis of the effects of such asynchronism in multiple-access
communication include [6]–[9], which focus on quantifying the
capacity region under various assumptions on the asynchronism
among users.

With respect to other work, perhaps the sequential decision
problem most closely related to our problem formulation is a
generalization of the change-point problem [10] often referred
to as the “detection and isolation problem”—see [11]–[13] for a
survey. In this problem, introduced in [11], a process starts with
some initial distribution and then changes at some unknown
time. The post-change distribution can be any of a given set of
distributions. From the sequence of observations, the goal is to
quickly react to the statistical change and isolate its cause, i.e.,
identify the post-change distribution, subject to a false-alarm
constraint.

While in both the synchronization problem and the detection
and isolation problem the goal is to quickly identify the cause
of a change in distribution, there are important distinctions be-
tween these two problems as well. First, in the detection and
isolation problem it is assumed that, once the observed process
changes distributions, it remains in the post-change state for-
ever. Hence, with arbitrarily high probability a correct decision
can be made simply by waiting long enough. This is not pos-
sible in the synchronization problem since the transmitted mes-
sage induces only a local change in distribution—after code-
word transmission the distribution reverts to its pre-change state.

Second, it is also important to note that the synchronization
problem has a codebook design component that the detection
and isolation problem does not. In particular, since the changes
in distribution are controlled by the number and choice of
codewords, the ease and quickness with which change can
be detected and isolated depends strongly on the codebook
design. Moreover, the best choice of codebook, in turn, depends
strongly on the channel parameters.

Finally, in the language of the synchronization problem, the
detection and isolation problem is focussed on the “zero-rate
regime,” i.e., on the minimum reaction delay in the limit of small
error probabilities, the number of messages being kept fixed. By
contrast, the synchronization problem examines the effects of
scaling the number of messages.

III. NOTATION

In general, we reserve capital letters for random variables
(e.g., ) and lower case letters to denote their corresponding
realizations (e.g., ), though as is customary, we make a variety
of exceptions. Any potential confusion is generally avoided
by context. In addition, we use to denote the sequence

, for . Moreover, when , we use the
usual simpler notation as an alternative to .
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Events (e.g., ) and sets (e.g., ) are denoted using the calli-
graphic fonts, and if represents an event, denotes its com-
plement. As additional notation, and denote the prob-
ability and expectation of their arguments, respectively, de-
notes the norm of its argument, denotes absolute value if
its argument is numeric, or cardinality if its argument is a set,

denotes the integer part of its argument, ,
and . Furthermore, we denote the Kronecker
function using

if
otherwise.

We also make use of some familiar order notation for asymp-
totics. We use to denote a term that grows no faster than
polynomially in its argument. We use to denote a (positive
or negative) quantity that grows more slowly than its argument;
e.g., denotes a term that vanishes in the limit. Finally, we
use to denote a nonnegative quantity that is asymptotically
bounded above and below by its argument, to within constants
of proportionality.

We denote by , and the set of all distributions
on , and , respectively. The set of all conditional
distributions of the form , we denote
using .

For , we use to denote the product distribution
induced by over for some , i.e.,

Likewise, for a memoryless channel characterized by channel
law , the probability of the output sequence
given an input sequence is

Additionally, for a distribution , we use
and to denote its left and right marginals, respectively;
specifically, for all and

and

We use to denote the usual information divergence
with respect to the natural logarithm, so for distributions

, we have for

Moreover, the expectation of this divergence with respect to the
distribution over is denoted using

We likewise denote by the mutual information induced
by the joint distribution , i.e.,

Additionally, we use to denote the binary entropy
function, i.e., for

In our analysis, we make use of the usual notion of strong
typicality [15]. In particular, a sequence is strongly typical
with respect to the distribution for some (implicit)
parameter if for all .

More generally, we make frequent use of the method of types,
and rely on the familiar notation for types. In particular,
denotes the empirical distribution (or type) of a sequence

, i.e.,

The joint empirical distribution for a sequence pair
is defined analogously. In turn, a distribution over

some alphabet is said to be an -type if is an integer
for all . The set of all -types over an alphabet is de-
noted using , and that over the alphabet is denoted
by , etc. Finally, the -type class of is defined
to be the set of all sequences that have type , i.e., such that

.

IV. PROBLEM FORMULATION

We consider discrete-time communication over a discrete
memoryless channel characterized by its finite input and output
alphabets and , respectively, and the transition probabilities

, for all and . Throughout the paper, we
assume that for all , there is some for which

.
There are messages .2 For each

message there is an associated codeword

which is a string of symbols drawn from . The code-
words form a codebook . Communication takes place as
follows. The transmitter selects a message randomly and
uniformly over the message set and starts sending the corre-
sponding codeword at a random time , unknown to the
receiver, independent of , and uniformly distributed over

. The transmitter and the receiver know the integer
parameter , which we refer to as the asynchronism level
of the channel. Note that the special case corresponds to
the classical synchronous communication scenario.

The receiver begins observing data starting at time .
When a codeword is transmitted, a noise-corrupted version of
the codeword is obtained at the receiver. When the transmitter
is silent, the receiver observes only noise. To formally char-
acterize the output distribution when no input is provided to
the channel, it is notationally convenient to make use of a spe-
cially designated “no-input” symbol in the input alphabet ,
as depicted in Figs. 1 and 2. Specifically, characterizes

2See the companion paper [16] for analysis of the case� � �, corresponding
to the pure synchronization problem.
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Fig. 1. Graphical depiction of the transition matrix for a discrete memoryless
channel. The “no-input” symbol � is used in characterizing the channel output
when the transmitter is silent. In this example, there are three possible non-
silence input symbols, and four possible output symbols. The no-input symbol
can be used like any other input symbol in codeword construction.

the noise distribution of the channel when there is no channel
input. Hence, conditioned on the value of and on the message

to be conveyed, the receiver observes independent symbols
distributed as follows. If or

, the distribution at
time is . However, if ,
the distribution at time is . Note that since the
transmitter can choose to be silent for arbitrary portions of its
length- transmission as part of its message-encoding strategy,
the symbol is eligible for use in the codebook design.3

The decoder takes the form of a sequential test , where
is a stopping time, bounded by , with respect

to the output sequence indicating when decoding
happens, and where denotes a decision rule that declares the
decoded message; see Fig. 2. Recall that a stopping time
(deterministic or randomized) is an integer-valued random vari-
able with respect to a sequence of random variables so
that the event , conditioned on , is independent
of for all . The function is then defined
as any -measurable map taking values in ,
where is the natural filtration induced by the process

.
We are interested in systems that convey as many message

bits as possible, and such that they can be detected and decoded
as quickly and reliably as possible. Given these competing ob-
jectives, we formulate the system design problem as follows.

First, we define the average probability of a decoding error
(given a codebook and a decoder) as

where indicates the event that the decoded message does not
correspond to the sent message, and where indicates the
conditioning on the event that message starts being sent at
time .

Second, we define the average communication rate with re-
spect to the receiver’s average delay in reacting to the sent mes-
sage, i.e.,

(1)

3However, it should be emphasized that which symbol in the alphabet is the
no-input symbol is a characteristic of the channel, and therefore beyond the
control of the code designer.

where4

with denoting expectation with respect to .
Defining rate as the “message-size-to-reaction-delay ratio” as

in (1) combines message size and reaction delay into a single,
physically meaningful figure of merit. Thus, large communica-
tion rates are achieved via large messages sizes and/or small
reaction delays.

Additional insight is obtained by rewriting (1) in the form

(2)

where5

(3)

is the normalized message size, and where

(4)

is the normalized reaction delay at the decoder. We refer to the
normalized message size (3) as the code rate, and it is measured
in nats per channel use, i.e., there are messages. We
also emphasize that may be either greater or less than one,
and thus may be greater or less than .

With the above definitions, we formulate our system design
problem for a given discrete memoryless channel and asyn-
chronism level as one of maximizing the communication rate

subject to the constraint of a small decoding error probability
.

In our analysis, we allow the block length to be arbitrarily
large. If the asynchronism level is subexponential in , then
there is no rate loss on the asynchronous channel (relative to the
capacity of the corresponding synchronous channel), as we will
discuss. But if the level of asynchronism grows at least expo-
nentially in the block length, i.e., for some constant

, a rate loss can be experienced.
With such exponential scaling, as is the focus in the paper, the

parameter , which we refer to as the asynchronism exponent,
can be interpreted as the number of nats per channel use required
to describe the starting time of communication. From this per-
spective, we see that in such asynchronous communication, a
total of nats of information is effectively conveyed
over the time interval of size . It should be empha-
sized, however, that such reasoning is rather loose—there is no
requirement in our system that the decoder be able to reliably
recover , only the message.

We also emphasize that incorporating reaction delay into
the performance criteria is important with our communication

4Note that the true reaction delay is actually � � � � � rather than � � � .
However, in our asymptotic analysis, the distinction is negligible, and thus we
use the former simply for aesthetic reasons.

5Note that we suppress the implicit dependence of �� on � in our notation.
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Fig. 2. Temporal representation of the channel input sequence (upper axis) and channel output sequence (lower axis). At time � message � starts being sent and
decoding occurs at time � . The symbol � indicates when there is no input to the channel, i.e., when the transmitter is silent.

model. In particular, the channel is being used for communi-
cation (and thus unavailable for subsequent use) whenever the
receiver is listening for the message. So, for example, without
an explicit constraint on reaction delay, larger messages sizes
and/or smaller decoding error probabilities will always favor
the decoder making decisions as late as possible, i.e., at time

, which grows exponentially with . In a practical
sense, such a communication system would be particularly inef-
ficient, since the receiver would be interacting with the channel
for a time interval that is exponential in the transmission block
length , and thus the effective rate of communication would
be vanishingly small.

To develop our results, we introduce the following formal def-
initions. First, we have the following natural notion of a coding
scheme.

Definition 1 (An Coding Scheme): Given a channel
, a rate–exponent pair is achievable if there exists a

sequence , for , of codebook/
decoder pairs, indexed by the codebook length , such that for
any and sufficiently large, the pair

i) operates under asynchronism level ;
ii) yields an average rate at least equal to ;

iii) achieves an average error probability of at most .
Given a channel , an coding scheme is a sequence

that achieves the rate–exponent pair
.

The capacity region characterizes the performance of the best
coding schemes.

Definition 2 (Asynchronous Capacity Region): The capacity
region of an asynchronous discrete memoryless channel is the
set of rate–exponent pairs for ,
i.e.,

where is the capacity of the corresponding synchronous
channel, and where is the supremum of the set of asyn-
chronism exponents that are achievable at rate .

Note that since is the highest achievable rate over the
synchronous channel, the rate over the corresponding asyn-
chronous channel cannot be higher. Hence, in developing the
capacity region, it suffices to restrict attention to the rates in the
interval .

For a given channel , the asynchronism exponent function
is nonincreasing in . Hence, the highest asynchro-

nism level for which reliable communication is possible is ob-

Fig. 3. The (hypothetical) capacity region of a discrete memoryless asyn-
chronous channel with channel law �. The nonincreasing curve ������
defines the upper boundary (efficient frontier) of achievable ����� pairs,
where � is the rate and � is the asynchronism exponent. Moreover, ����
is the synchronization threshold, and 	��� is the capacity of the associated
synchronous channel. In this example, ������ is not continuous at � � �.

tained when the communication rate is zero. This motivates the
following definition.

Definition 3 (Synchronization Threshold): The synchro-
nization threshold of a channel , denoted using , is the
supremum of the set of achievable asynchronism exponents at
all rates, i.e., .

For the purposes of illustration, a hypothetical capacity region
is depicted in Fig. 3. In this example, the region has a disconti-
nuity at .

Our main results, developed in Section VI, take the form of
properties of the asynchronous capacity region of Definition 2.
In particular, we provide a simple characterization of the syn-
chronization threshold , and more generally develop a non-
trivial inner bound on the asynchronous capacity region.

V. A CODING SCHEME FOR ASYNCHRONOUS CHANNELS

The following coding scheme will be used in the develop-
ment of the main results of the paper. A significant feature of
the resulting communication system is that it does not consist of
separate transmission detection and message identification sub-
systems. Rather, detection and identification are treated jointly.

We use a random code construction. In particular, the
codewords, each of length , are drawn randomly from a suit-
able ensemble governed by a distribution . As is typ-
ical, this codebook is fixed for the duration of system operation.
Before describing the relevant ensemble in more detail, we first
describe the decoder.

A. Decoder Design

During decoding, there are two sources of error. The first
comes from atypical channel behavior at times when no code-
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word is being sent, which may result in what we refer to as a
false alarm—detecting the presence of a codeword before one
has been sent. The second comes from atypical channel behavior
during codeword transmission, which may result in what we
refer to as a misidentification—detecting the wrong codeword
after one has been sent. The probabilities of these kinds of errors
depend on the asynchronism level and communication rate. In
particular, the higher the asynchronism level , the more likely
a false alarm, while the higher the code rate , the more likely
a misidentification.

Accordingly, our decoder takes into account both sources of
error, and is parameterized by and the target . More specif-
ically, from the sequence of symbols it observes, the decoder
makes a decision as soon as a block of con-
secutive such symbols satisfy two conditions: 1) the block of
symbols must be sufficiently different, in a divergence sense,
from the noise; and 2) the block of symbols must be sufficiently
correlated, in a mutual information sense, with one of the code-
words.

A formal description of our decoder is as follows. Decoding
occurs at time

(5)

where is a stopping time associated with message , and the
declared message is any that satisfies . The stopping
time takes the form

s.t.

and (6)

where

(7)

and

(8)

with

(9)

and with the parameters and appropriately
chosen as a function of and the target .

Remarks on Decoding Rule
First, we note that the choice of thresholds is determined by

the communication rate of interest. In general, to ensure a small
probability of misidentification, the thresholds and
must be chosen below and , respec-
tively. As we will see, at zero rate, they need only be slightly
below.

We also note that in [17] a simpler decoding rule is considered
in which the stopping times are of the form (6), but without
the divergence condition , i.e., a decision is made
as soon as for some and we have . With
such a decoder, it is possible to achieve asynchronism exponents

as large as the capacity of the synchronized channel.

However, it is unclear whether asynchronism exponents beyond
are achievable with this simplification. By contrast, with

the decoder (6), asynchronism exponents larger than (and
indeed all the way up to ) can be achieved.

Also, it might seem that the term used in the decoder
is unnecessarily complicated, and could be replaced with, for
instance, the simpler term

corresponding to fixing . However, system performance
with this simplified decoder is more difficult to analyze in the
scenario when the symbols being observed by the decoder lie
partly inside and partly outside the transmission interval. As
such, our particular choice of decoder is one of convenience.

Finally, it should be emphasized that while other sequential
decoder designs may achieve the performance levels established
in the sequel, a noteworthy feature of our decoder is that it is
also nearly universal. In particular, the rule does not depend on
the channel statistics, except for the noise distribution .
In fact, this decoder can be viewed as an extension to the asyn-
chronous channel of a sequential universal decoder introduced
in [18, eq. (10)] for the synchronized setting.

B. Codebook Design

Our random code construction is based on a natural gener-
alization of the constant-composition codebooks described in,
e.g., [15, p. 117]. Specifically, a code of generalized constant
composition with respect to a distribution is one in which
the codewords and all their prefixes of significant size have an
empirical type close to . Formally, we have the following def-
initions.

Definition 4 (Generalized Constant-Composition Code): A
codeword is said to have sequential constant composition
with respect to distribution , denoted , if6

whenever (10)

Furthermore, a generalized constant-composition codebook is
one in which all codewords have sequential constant composi-
tion.

The value of the generalized constant-composition codebook
is as follows. With an independent and identically distributed
(i.i.d.) codebook, in which each of the elements of each of
the codewords is i.i.d. according to the prescribed
distribution , there is a small probability that any codeword
of interest will be atypical, i.e., have an empirical distribution
that is not close to the . This effect ultimately contributes to
the overall error probability of the coding scheme. By contrast,
in a generalized constant-composition codebook, this additional
source of error is eliminated as all codewords are guaranteed to
have an empirical distribution sufficiently close to . Moreover,
requiring that prefixes of the codewords also have their empir-
ical distributions constrained in this manner takes into account

6Our choices of �� ��� for the type match accuracy and �� ��� for the
minimum prefix size are convenient but not unique, as will become apparent.
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that the decoder makes decisions based on blocks of data that
may be smaller than the full codeword length.

Remarks on Codebook Construction
First, it is conceptually straightforward to convert an i.i.d.

codebook into a generalized constant-composition one, i.e., to
generate the generalized constant-composition ensemble from
the i.i.d. ensemble. In particular, given a message , the code-
word is generated so that all of its symbols are i.i.d. ac-
cording to the distribution . If the obtained codeword does not
satisfy the sequential constant-composition property (10), it is
discarded and a new codeword is regenerated until the sequen-
tial constant-composition condition is satisfied.

In practice, very little regeneration is required to gen-
erate each codeword. Indeed, if is large enough, with
overwhelming probability a random codeword satisfies the
sequential constant-composition property. Specifically, we
have the following.

Lemma 1: The probability that a sequence
of random variables i.i.d. according to satisfies the sequential
constant-composition condition tends to one as .

Proof: By the union bound, the probability of gener-
ating a sequence that does not satisfy the sequen-
tial constant-composition condition is upper-bounded by

, which tends to zero as .

Note that with generalized constant-composition codebooks,
it simplifies the analysis to impose the mild constraint that

(11)

in order to ensure that the decoder only operates on codeword
prefixes large enough that the sequential constant-composition
property holds. To verify this, referring to (6) in the description
of our coding scheme, we see that if denotes the minimum
value of for which decoding can occur, then

(12)

(13)

(14)

(15)

where to obtain (12) we have used that
for all , where to obtain (14) we have used that ,

and where to obtain (15) we have used (11). Hence

(16)

from which we see that the message will only ever be decoded
from a prefix of the codeword that is sufficiently long that its
behavior is controlled by the sequential constant-composition
condition as defined in Definition 4. Note that any codebook
with exponentially many codewords, as will generally be ade-
quate for our purposes, will meet this condition.

In general, the codebook distribution needs to be tailored to
the target rate of interest. Some useful insight is gained by ex-
amining the zero-rate regime. As will become apparent, in this
regime, to ensure a sufficiently small false-alarm probability,

given the threshold choices needed to control the probability
of misidentification, must be chosen so as to ensure both

and

(17)

By choosing small enough, the first of these conditions is
readily satisfied for a rich class of distributions . Thus, with
such an , it suffices to choose a in this class such that

to ensure reliable communication.
Evidently, to accommodate the largest possible levels of asyn-

chronism, we should choose a codebook such that the induced
output distribution is as far as possible (in a divergence sense)
from the noise distribution. But

(18)

via the convexity of divergence, with equality if is the dis-
tribution in which some maximizing symbol in (18) is used
with probability one. Hence, assuming, as is the case, the class
of distributions such that includes distributions
arbitrarily close to this maximizing one, reliable communica-
tion is possible whenever

As we will see, this turns out to be precisely the synchronization
threshold of the channel. Thus, using a codebook distribution
in which codewords are composed primarily of the symbol
accommodates the largest possible asynchronism exponent.

Beyond the zero-rate regime, finding optimal choices for is
more complicated, though we find useful choices in the sequel.
Nevertheless, the general strategy is the same: among all that
allow the target rate to be achieved, we choose that which is as
different as possible from the noise distribution of the channel.

VI. RESULTS

In this section, we summarize, interpret, and discuss our main
results. We also present a couple of representative examples.

We begin with the following useful inner bound on the
capacity region , a proof of which is given in Sec-
tion VII-A.

Theorem 1: Let be a discrete memoryless channel such
that for all . If for some constants

, and input distribution such
that , the following conditions are satisfied:

(I)

(II)

(III)

then the pair is achievable, where the infimum in
(III) is defined to be whenever the set over which it is de-
fined is empty. If, in addition, the following conditions are also
satisfied:

(IV)

(V)
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then the pair is achievable. Moreover, in
both cases, communication is achieved using a codebook of rate

.

Note that the conditions (III)–(V) in Theorem 1 are easy to
check numerically since they involve only convex optimiza-
tions.

As our proof reveals, the identified rate pairs are achieved
by a combination of generalized constant-composition code-
books and our sequential decoding rule. Some additional com-
ments on this construction are worthwhile. In particular, we
begin by noting that the right-hand side of condition (V) is

, where

(19)

is the sphere-packing exponent function at rate for a channel
with input distribution . Since the sphere-packing exponent

at rate is (see, e.g., [15, p. 166])

we conclude that at strictly positive rates, the asynchronism
exponents achieved in Theorem 1 cannot exceed the zero-rate
sphere-packing exponent for the channel, i.e.,

A key implication of Theorem 1 is given by the following
corollary, which establishes that the asynchronous capacity re-
gion is nondegenerate—reliable communication is possible at
all rates below the synchronous capacity even with exponen-
tially large levels of asynchronism.

Corollary 1: For every channel with synchronous capacity
, any rate can be achieved at a strictly

positive asynchronism exponent.
Proof of Corollary 1: For , consider con-

ditions (I)–(IV) in Theorem 1. First set and choose
and the input distribution so that and

, which is always possible since .
With this choice conditions (II), (IV), and (V) are satisfied for
any and any small enough. Picking such a
small , condition (I) is satisfied for a sufficiently small

. Finally, since is a nonincreasing function
of , it follows that as well.

Note that the corollary, together with the fact that the capacity
region is nonincreasing, imply that a rate loss (relative to the
capacity of the synchronized channel) is experienced only if
the asynchronism level is at least exponential in the codeword
length.

As our second main result, we characterize the synchroniza-
tion threshold (for any discrete memoryless channel).

Theorem 2: For any discrete memoryless channel , the syn-
chronization threshold of Definition 3 is given by

(20)

The proof, developed in Section VII-B, consists of
two parts. The converse part establishes that no coding
scheme can achieve an arbitrarily low error probability if
the asynchronism level grows at least as fast as with

. The direct part, which fol-
lows from the first part of Theorem 1, establishes the existence
of a coding scheme with vanishing error probability as
when the asynchronism level grows no faster than with

.
As a special case, note that if for some ,

then since for some other , it follows that the
right-hand side of (20) is infinite, i.e., reliable communication is
possible regardless of the rate at which the asynchronism level
grows exponentially with the block length.

We also note that the capacity of the synchronized
channel and the synchronization threshold represent
opposing extremal points on the capacity region for the asyn-
chronous channel, and each characterizes a distinct limit on
hypothesis discrimination at the output of the channel. The
synchronous channel capacity characterizes the maximum
number of message sequences with respect to the block
length that can be discriminated at the output of the channel.
By contrast, the synchronization threshold characterizes the
largest value of with respect to the block length such that
two sequences of length , each constrained to use the
symbol except over an arbitrarily placed block of length in
the sequence, can be discriminated at the output of the channel.

Nevertheless, although and do not appear to be
related in any other more fundamental ways, it is noteworthy
that one is bounded by the other. Indeed, with denoting a
capacity-achieving distribution of the (synchronous) channel ,
we have

(21)

where (21) follows from using the fact [14, Lemma 13.8.1]

for all

with . Moreover, it can be checked that if
then .

As applications of Theorem 2, we have the following simple
examples.

Example: Binary Symmetric Channel
Consider the binary symmetric channel of Fig. 4, where

, and the crossover probability is . The synchronous
capacity of this channel is , while the
synchronization threshold is
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Fig. 4. A binary symmetric channel with crossover probability �. The capacity
of the synchronized channel is ���� � �� � � � ���, and the zero-rate
sphere-packing exponent is � ��� � � ���� ���� ���. With � � �, the
synchronization threshold is ���� � ��� ��� ������ �����.

so for sufficiently small . Moreover, the zero-
rate sphere-packing exponent is .
Therefore

as

so this channel is an example of one for which there is a discon-
tinuity at zero rate in the asynchronism exponent achieved by
generalized constant-composition codebooks and our sequen-
tial decoding rule.

For the special case , the channel is error free. In this
case, the synchronous capacity is , while the syn-
chronization threshold is

which expresses that reliable communication is possible for
this channel no matter how large the asynchronism level, as
we would expect. Indeed, a suitable codebook for this channel
consists of codewords, where the th codeword
consists of the prefix , followed by the -bit binary rep-
resentation of . The rate of this code is ,
so . Moreover, the decoder locates the
start of the codeword transmission by finding the first in the
output stream, and decoding happens after collecting the next

bits. Hence, the communication rate and code rate
coincide asymptotically, i.e., as well.

Evidently, this channel has the largest possible asynchronous
capacity region: for .

Example: Gaussian Channel
Next, consider antipodal signaling over an additive white

Gaussian noise channel with hard decision decoding. With this
model, the channel output at any particular time is ,
where is the corresponding channel input, and where the
noise is a Gaussian random variable, independent of , with
zero-mean and variance , where represents the
(peak) signal-to-noise ratio in the channel. Before decoding,
the receiver makes a hard decision on each received symbol
and declares if and if .

The antipodal channel inputs are and .
In addition, corresponds to there being no input to the
channel, so this represents the silence symbol . When ,
the hard decision is or with equal probability. For each
of the antipodal inputs, the corresponding hard decision has the
opposite sign with probability where

as (22)

Fig. 5. A ternary-input, binary-output channel, with crossover probability
parameter �. Among other applications, this models antipodal signaling over a
Gaussian channel with hard decisions at the decoder. The synchronous capacity
and the synchronization threshold coincide for this channel; specifically,
���� � ���� � �� � �� ���.

The equivalent ternary-input, binary-output discrete memo-
ryless channel is depicted in Fig. 5. For this channel, the syn-
chronization threshold is

(23)

which is the same as the capacity of the synchronized
channel.

From Theorem 2, in order to achieve vanishing error proba-
bility it is necessary that . Substituting for in (23)
using (22), we then see that in order to achieve reliable commu-
nication it is necessary that

as (24)

Via the right-hand side of (24) we have

so at high-signal-to-noise ratio, increasing results in a neg-
ligible increase in the level of asynchronism for which reliable
communication is possible. This means that to exploit power in
the high-signal-to-noise ratio regime it is necessary to employ
a finer quantization (i.e., decisions that are “less hard”) at the
channel output.

Finally, note that the high-signal-to-noise ratio limit corre-
sponds to the special case of Fig. 5 in which . This special
case is an example of a channel for which

. To see this, in Theorem 1, let us choose
such that for some

fixed , and arbitrarily. Moreover, note
that . Now we examine
the conditions of the theorem. First, conditions (III) and (IV)
are satisfied since with our choice of the infimum is infinite.
Second, condition (V) is satisfied because
unless , but is not in the set over which the mini-
mization is taken since . Third, condition (II) is satis-
fied because the left-hand side is zero, but the right-hand side
is strictly positive since and

so . Finally, we
choose sufficiently close to that ,
so our rate is

(25a)
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Then, via condition (I) we have that the achievable exponent is

(25b)

Hence, from (25) we have as .

VII. ANALYSIS

We first prove Theorem 1, then prove the converse and the
direct parts of Theorem 2, using Theorem 1 for the latter.

Our proofs exploit large-deviations bounding techniques for
finite-alphabet random variables, as described in, e.g., [15, Secs.
1.1 and 1.2], [14, Ch. 12]. In particular, we make extensive use of
[14, Theorems 12.1.1 and 12.1.4] on the cardinality of -types
and on the probability of an -type class.

The following identity, which follows immediately from the
fact that for , will be useful
in our analysis.

Fact 1: For any distributions and

(26)

In our proofs (of achievability), it will be convenient to define
the following events. Let the message start being emitted at
time , and let be the event that an incorrect codeword is
detected early; specifically

(27)

with as defined in (6). This event happens when there is
anomalous behavior in the channel during the time interval pre-
ceding transmission.

Similarly, let be the event that the correct codeword is
detected late; specifically

(28)

This event happens when there is anomalous behavior in the
channel during the transmission interval.

Now since

(29)

we have

(30)

To upper-bound and , we begin by using
to denote the event that message is declared at time

by observing the last symbols, i.e.,

(31)

where

(32)

with and as defined in (7) and (9).7

7We emphasize that the relevant observations� and the codeword sym-
bols � ��� implicit in � ��� and � ��� in (32) are random variables.

With this notation, we then have, via the union bound

(33)

and

(34)

Finally, we emphasize that we average over the relevant code-
book ensemble in our analysis of both rate and error probability.
By the usual random coding argument, when these averaged
quantities meet their targets, some particular codebooks in the
ensemble must also meet these targets.

A. Proof of Theorem 1

For our development, we use the basic coding scheme de-
scribed in Section V.

Our proof is obtained by suitably bounding both the proba-
bility of error and, for the second part of the theorem, the av-
erage reaction delay in decoding. For this purpose, we require
the following two lemmas. Proofs immediately follow the proof
of the theorem.

Lemma 2: Let the codebook be random, of generalized con-
stant composition with respect to , and have code rate satis-
fying (11), and let the decoding rule have (constant) thresholds

. Then for any (nonnegative) asynchronism exponent
, the bound as defined in (33) satisfies, as

(35)

Lemma 3: Let the codebook be random, of generalized con-
stant composition with respect to , and have code rate satis-
fying (11), and let the decoding rule have (constant) thresholds
satisfying . Then for any fixed we
have, as

(36)

where

(37)

(38)

and where we note that for the special case , (36) is an
upper bound on as defined in (34).

For our proof, we begin by choosing the code rate to be

(39)
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and analyzing the error probability of the scheme.
Probability of Error Analysis: We show that the probability

of error vanishes. Bounding via (30) with (27) and
(28), we obtain

(40)

where is as defined in (33).
From Lemma 3 with , it follows that the second term in

(40) vanishes. Indeed, with as in (39), we have that
, which is strictly positive according to condition (III). More-

over, again with as in (39), whenever
since .

Thus, it remains only to show that the first term in (40), i.e.,
, also vanishes. From Lemma 2, the second term in (35) van-

ishes since . Substituting for from (39) into (35), we
see that condition (I) ensures that the first term also vanishes.

This establishes the first part of Theorem 1. To establish the
second part we must analyze the associated communication rate.

Rate Analysis: We first bound the (conditional) normalized
average reaction delay, which can be written in the form

(41)

(42)

where to obtain (41) we have used that , and where in
(42)

(43)

(44)

(45)

where is arbitrary.
Under the conditions of the theorem, both and

vanish, and thus determines the overall reaction delay
(and hence communication rate).

Focusing first on the nonvanishing term , we judiciously
choose8

(46)

where

(47)

with

(48)

8The term � in the definition of �� can be replaced by any positive
strictly decreasing function of � .

As we verify at the end of the proof, behaves asymptoti-
cally as follows.

Fact 2: The quantity as defined in (46) satisfies

as (49)

From (49), it follows that, as required, for suf-
ficiently large. Moreover, provided that both and
vanish, then using (49) with (43) in (42), we obtain

, and thus (4) satisfies

as (50)

where we have exploited that the bound on is uniform in
and . Hence, using (39) and (50) in (2), we obtain that the

communication rate satisfies

as (51)

We now verify that the two required terms in (42) vanish.
Focusing on , starting from (44), and using Lemma 3 with

we have

(52)

Hence, it suffices to show that is strictly positive and
does not decay too quickly as .

For , rewriting (46) with (47) as

(53)

implies that

(54)

where we have used the following simple fact.

Fact 3: If

for some , and , then

Using (48), (49), and (54) in the second term in (52), we ob-
tain

(55)

Turning now to , using condition (II), together with
(39) and (49), we have
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so for some

whence

(56)

Using (56) and (49) in the first term in (52), we obtain

(57)

Substituting (55) and (57) into (52), we see that
—and hence —vanishes as as

claimed.
Focusing now on , starting from (45) and using Lemma

3 with , we obtain

(58)

But with chosen according to (39), it follows from (IV) and
(V) that , as before, and , so

from which we conclude that vanishes as , as
required.

To conclude the proof we verify (49), and establish Lem-
mas 2 and 3.

Proof of Fact 2: It suffices to show that as defined in
(47) satisfies as . To establish this result,
we exploit that a monotonic bounded sequence converges [19,
Theorem 3.14]. To apply this result, we first observe that since

is a continuous function over the compact set

(59)

in which is a continuous function of that is zero
if and only if , the minimum in the denominator of (47)
is a well-defined and continuous function, and thus so is
except where it is infinite. Furthermore, we note that is a
monotonically decreasing function as , and that

.
It remains only to verify that for all sufficiently small,

, which is equivalent to showing that for small
enough, the set in (59) contains no trivial such that

, i.e., such that is the same for all .

Consider the set of product measures in whose left
marginal is , i.e., if . Since

is compact and is continuous over

is well defined. To complete the proof, we must show that this
minimum is positive. If the minimum is , then
must be contained in , because if and only if

. But implies that , which is a
contradiction. Hence, the set (59) contains no trivial conditional
probability. Therefore, for small enough, the denominator in
the definition (47) is strictly positive, implying that is fi-
nite.

To prove Lemmas 2 and 3 we make use of the following ad-
ditional two small lemmas.

Lemma 4: Let , and let denote probability
with respect to the measure by which is generated in an
i.i.d. manner according to distribution . Let
denote probability when is instead drawn from the random
generalized constant-composition ensemble with respect to the
distribution . Then for any events such
that

(60)

for some constant , we have

as (61)

Proof: First, note that

where we recognize that the first term on the right-hand side
is , and note that the second term is via
Lemma 1. Finally, since is also
as when (60) holds, we obtain (61).

When two distributions and satisfy

, we express this relation via the notation . In
such cases we have the following.

Lemma 5: Let , and for
be arbitrary. Moreover, let be such that

for . Then, as

(62a)

(62b)

and

(62c)

Proof: First consider (62a). When is zero,
the inequality holds trivially. When is infinite, the
inequality also holds trivially since in that case
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is also infinite for large enough. When is finite,
we can write

(63)

where the sum extends over such that
. Thus, for any fixed , as , both terms in (63) go to
, which proves (62a). Expressions (62b) and (62c) follow via

similar reasoning, so we omit the details.

Proof of Lemma 2: We separately consider two cases,
corresponding to whether occurs outside the trans-
mission interval (Case I), or partly inside and partly outside
the transmission interval (Case II). Recall from (16) that

.

Case I: or : We have, as

(64)

(65)

(66)

(67)

where to obtain (64) we have used (61) of Lemma 4 in addition
to [14, Theorem 12.1.4], where to obtain (65) we have used the
identity (26), where to obtain (66) we have used the identity

[14, Theorem 12.1.1], and where to
obtain (67) we have used that .

Case II: and : The event
involves the observations ,

the first being distributed according to the noise distribution,
and the remaining according to the distribution induced by
the sent codeword.9 In order to deal with the discrepancy that
results because codeword prefixes shorter than do not
satisfy the sequential constant-composition property, we distin-
guish two subcases.

Case II-A: and : We have

(68)

9Actually, this case also captures the uninteresting scenario when the first
portion of the � symbols is a codeword, and the second portion is noise. We
could have avoided this by more accurately defining the range of � in (33) to be
��� � � � � � �� � ��, though our results are unaffected.

(69)

(70)

(71)

where to obtain (68) we have used that
for any due to (31), where to ob-

tain (69), we have used, via (32),
in addition to [14, Theorem 12.1.4] and (61) of Lemma 4,

where to obtain (70) we have used the identity (26), and where
to obtain (71) we have used both [14, Theorem 12.1.1] and that

.
Case II-B: but : We consider

only the case ; by symmetry, the case
yields the identical result. We have, as

(72)

(73)

(74)

where to obtain (72) we have used, in addition to [14, Theorem
12.1.4] and (61) of Lemma 4, that
and for any , where to obtain (73)
we have used the identity (26), and where to obtain (74) we have
used both [14, Theorem 12.1.1] and that .

Case II-C: but : By symmetry,
we have, from Case II-B

(75)

We note that (74), and thus (75), is identical to (71), and thus
Cases II-A, II-B, and II-C all yield the same bound.

Finally, a bound on is obtained by summing the upper
bounds in (67) and (71), recognizing that in the defining sum-
mation (33) there are less than of the former
terms, and less than of the latter ones, yielding (35) as
desired.

Proof of Lemma 3: For now, we restrict our attention to the
case in which is an integer. We remove this restriction at the
end of the proof.

Applying the union bound to the complement of (32) for the
particular case of interest yields

(76)
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where

(77)

and where

(78)

for .
We upper-bound (77) via

(79)

(80)

(81)

(82)

where to obtain (79) we have used [14, Theorem 12.1.4] and
(61) of Lemma 4, where to obtain (80) we have used (62c) of
Lemma 5, where to obtain (81) we have used [14, Theorem
12.1.1], and where to obtain (82) we have used the continuity
of .

We next upper-bound as defined in (78),
breaking the summation into three parts, to deal with effects of
codeword prefixes that are shorter than . In particular,
we write

(83)

with

Case I: and : We have,
as

(84)

(85)

(86)

(87)

(88)

(89)

where

and

To obtain (84) we have used [14, Theorem 12.1.4] and (61) of
Lemma 4, to obtain (85) we have used that there is a constant

such that

to obtain (86) we have used (62a) and (62b) of Lemma 5, to
obtain (88) we have used Lemma 7 in Appendix II to show that

, and to obtain (89) we have used the continuity
of .

Case II-A: but : We have,
as

(90)

(91)

(92)

(93)
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Fig. 6. Parsing of the received sequence of maximal length ��� � � into �
blocks � � � � � � � � � of length � , where � � ����� � �����.

(94)

(95)

where to obtain (90) we have used [14, Theorem 12.1.4] and
(61) of Lemma 4,10 where to obtain (91) we have used that

and , where to obtain (92) we have
used that since , where
to obtain (93) we have used (62a) and (62b) of Lemma 5, and
where to obtain (95) we have used the continuity of .

Case II-B: But : By sym-
metry, we have, from Case II-A,

(96)

Finally, summing (88), (95), and (96) in accordance with (83),
we obtain (36), as desired, for the case in which is an integer.
When is not an integer, note that

where . Now as ,
so whenever is
continuous, which is the case for both and ,
so our results do not change.

B. Proof of Theorem 2

Proposition 1 (Converse): Given a channel , no coding
scheme can achieve an asynchronism exponent strictly greater
than as defined in (20).

Proof of Proposition 1: It suffices to restrict our attention
to the case in which for all ; otherwise, the
proposition holds trivially since is infinite.

Our approach is to lower-bound the error probability associ-
ated with the (optimistic) scenario in which

1) there are only possible messages, so ;
2) as depicted in Fig. 6, the chosen message is transmitted in

one of distinct time slots of duration , where

as (97)

3) the receiver is cognizant of these possible time slots; and
4) the decoder makes a decision at the end of the uncertainty

window, i.e., at time .

We show that when

(98)

10Note that the empirical distribution of a codeword of length � and the em-
pirical distribution of its suffix of size ��� �� ����� have an � distance of
at most ��� ���� � �� �. Hence, via the triangle inequality, if the empirical dis-
tribution of the codeword is �� ��� close to � , its suffix is ��� � �� ��� ���
close to � .

for any , the probability of error of the best communication
systems for this scenario is asymptotically bounded away from
zero.

We let , denote the th received block of size
, and we use to denote the distribution of a received

block when the input is .
The received data is distributed according to

(99)

when message is sent, where is the sequence of consec-
utive symbols. Using (99), it is straightforward to verify that a
maximum-likelihood decoder, which minimizes the probability
of a decoding error, declares message or de-
pending on whether the sufficient statistic

(100)

is positive or negative, respectively, where

(101)

and where if (100) is zero the decoder declares one of the two
messages at random.

As a result, we have

(102)

where denotes probability conditioned on message being
sent.

Let denote the block during which the selected message
is transmitted. Then under , and given , the for

are all i.i.d. according to , and
has distribution .

To simplify the exposition, we let the codeword
consist of a symbol repeated times, with .
The generalization to the case where the codewords each com-
prise multiple symbols is obtained by a simple (if notationally
more cumbersome) extension. With our simplification,
depends only on the type of its argument , so at the
expense of a slight abuse of notation we equivalently write

, i.e.,

(103)
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Let be the set of sequences that are strongly typical
with respect to for some implicit parameter

, i.e.,

(104)

Accordingly, for sufficiently large, we have

(105)

(106)

(107)

(108)

(109)

where (105) holds for any constant , where to obtain (106)
we have used the independence of and
under , where to obtain (107) we have made the particular
choice

(110)

where to obtain (108) we have used that
when the block length is chosen sufficiently large, and

where in (109), are a set of i.i.d. random variables,
each distributed according to where is distributed
according to .

Substituting (109), and the corresponding expression

obtained by symmetry, into (102), we obtain

(111)

where

(112)

From (110) we have

(113)

where

(114)

(115)

(116)

(117)

as and , where and denote van-
ishing terms in and , respectively. To obtain (114) we have
used the definition (104) of , to obtain (115) we have used
that the admissible are of the form11

as (118)

and to obtain (116) we have used (103) and the continuity of
. In turn, letting

(119)

we then have, using (117) with (113)

(120)

as and .
Hence, to establish our proposition, via (97), it remains only

to verify that the random walk crosses with finite
probability as . Our argument makes use of the fol-
lowing lemma, whose proof we defer to Appendix I.

Lemma 6: Let be a distribution over a finite alphabet
such that, for some integer and

(121)

Let be an -type over so that

and (122)

Let

(123)

Then

(124)

for some (that depends on ).

To apply Lemma 6, we first let be the alphabet for , i.e.,

for some

11For the purposes of interpreting such expressions, the distributions involved
can be viewed as vectors, and the order factor applies to the vector as a whole.
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and let

(125)

where (126)

Furthermore, we let be the distribution of when no message
is sent in the corresponding block, i.e., for all

(127)

and we let, using (97) with (98)

as (128)

Finally, let be any distribution such that , where

(129)

with

(130)

Now as defined in (123) satisfies , i.e.,

(131)

as we now show. First, as defined in (112) depends only on
the type of , and can be equivalently expressed in the form

Next, using (123) and (125), we have

(132)

and, via (129), since , we have , i.e.,

(133)

But then (132) implies

as (134)

so as claimed, where we have used that
. To verify this latter ratio is vanishing, note that while

grows exponentially with according to (120), is bounded.
Specifically, in (126) satisfies

as (135)

which, when substituted into (103), yields

as

whence as , i.e., grows at most subex-
ponentially with .

In turn, we have

(136)

(137)

(138)

for some , where to obtain (136) we have used that from
(123), and are related by the transformation ,
and (131), and where to obtain (137) we have used (124) in
Lemma 6.

We now proceed to establish our proposition by contradiction.
Suppose that the right-hand side of (111) vanishes as ,
i.e.,

(139)

for some arbitrarily small and sufficiently large. Then
it follows from (138) and the fact

(140)

that

(141)

for large enough, which is in contradiction with (139) for
small enough. We conclude that must be asymptotically
bounded away from zero, and so is the right-hand side of (111).

To verify (140), we first note

(142)

(143)

(144)

where to obtain (142) we have used the union bound, where to
obtain (143) we have used (139), and where to obtain (144) we
used the fact that

(145)

for any sufficiently small , as .
To verify (145), we first use Chebyshev’s inequality and the

fact that the variance of a binomial random variable is upper-
bounded by its mean to obtain, for

(146)
whence

Authorized licensed use limited to: MIT Libraries. Downloaded on October 28, 2009 at 09:24 from IEEE Xplore.  Restrictions apply. 



TCHAMKERTEN et al.: COMMUNICATION UNDER STRONG ASYNCHRONISM 4525

Thus, it suffices to show that grows with for
.

Considering first, , we have

(147)

(148)

(149)

(150)

where to obtain (147) we have used the usual lower bound on
the probability of a type class [14, Theorem 12.1.4], where to
obtain (148) we have used that the admissible are of the form
(118), where to obtain (149) we have used the continuity of

, and where to obtain (150) we have used (119).
Combining (128) and (150) we thus obtain

(151)

which grows exponentially with provided is small enough,
since via (20).

For the case , we note that by [14, Theorem 12.1.4]

(152)

which when combined with (128) yields

(153)

which also grows exponentially with .
To conclude the proof we need only verify that and sat-

isfy the conditions (121) and (122) of Lemma 6 for our choices
(125) and (126) of and , respectively.

First, that (121) is satisfied follows immediately from (153).
Next, by the definition of it follows that

so

(154)

Likewise, from the definition of it also follows that

(155)

Hence, the left-hand inequality in (122) is satisfied with
.

Finally, the definition of equivalently implies that

i.e.,

(156)

But, as we showed, grows exponentially with , so
(156) implies that grows without bound, so the second
requirement of (122) is satisfied.

Proposition 2 (Achievability): Given a channel , any asyn-
chronism exponent strictly less than as defined in (20)
is achievable.

Proof of Proposition 2: When , Proposition 1
establishes that , and thus in this case.
Hence, in the sequel, we consider .

Also, if for some , then arbitrarily large
asynchronism exponents can be achieved, i.e., . In-
deed, in such a scenario, it suffices to use a code for synchronous
channels of block length together with a prefix of
length consisting solely of the symbol . Then the proba-
bility that the codeword start cannot be detected vanishes with

, so the resulting code achieves at least for any .
Hence, in the sequel we need only consider the case in which

for all , to which Theorem 1 can be ap-
plied. Accordingly, we establish our proposition by showing that

and can be appropriately chosen in Theorem 1 so
that is arbitrarily close to .

First, we pick an input distribution so that
and ; this is possible since .
Next, let

where is the distribution in which a maximizing symbol in
(20) occurs with probability . Note that from the concavity of

in , we have, for all

Proceeding, fix , and let . Moreover, let

so that conditions (II) and (III) are satisfied. From condition (I)
the achieved exponent is

(157)

(158)

Taking limits, we have

(159)

(160)

(161)
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where to obtain (159) we have used, via (18), that
is bounded and therefore continuous in ,

and where to obtain (160) we have used the definition of .
Finally, using (161) with (158), we see that

from which we conclude all asynchronism exponents strictly
less than can be achieved.

VIII. CONCLUDING REMARKS

Our main contribution is a simple but meaningful model
for the kinds of highly sporadic communication characteristic
of emerging sensor network and related applications. Two
key features of our model are that: 1) message transmission
commences at a random time within some window, which
characterizes the level of asynchronism, and 2) communication
rate is the number of message bits relative to the (average)
receiver reaction delay, i.e., the elapsed time between when the
transmission commences and the decoder makes a decision.

Under this model, when the asynchronism level scales subex-
ponentially in the length of the codeword used to represent
the message, the rate loss relative to synchronous communi-
cation is zero—the capacity of the synchronized channel can
be achieved—and when it scales superexponentially, reliable
communication is generally not possible at all. As such, the
exponential regime is the interesting one. As we show, there is a
sharp phase transition phenomenon: reliable communication is
possible if and only if the scaling exponent is below a particular
channel-dependent critical value. When, in addition, there is
a particular rate requirement, the critical value decreases, i.e.,
less asynchronism can be tolerated. However, we show that
at any rate below the capacity of the synchronized channel,
reliable communication is generally possible with at least some
level of exponential asynchronism.

There are several natural directions for further research. First,
characterizing the asynchronous capacity region for
all would be useful, or at least obtaining good inner
and outer bounds. Recent preliminary results along these lines
appear in [20], [21]. More generally, there is much to be done
in the development of practical codes that both approach these
fundamental limits, and can be decoded with low complexity.

There are also important architectural questions. For ex-
ample, while existing communication systems make use of
separate synchronization and communication phases in the
transmission, this is not a constraint in our formulation. Indeed,
our coding schemes did not impose such separation. It will
be useful to quantify the rate loss inherent in schemes with
separate synchronization, and understand the regimes in which
such losses are and are not significant. Recent preliminary
results on these issues appear in [22].

There are many extensions of the present model that war-
rant investigation. One example is the extension to continuous-
time channels, an important example of which is the general
Gaussian channel. Another is the extension to channels with
memory, such as finite-state channels.

Another extension involves incorporating channel state un-
certainty into the problem. In the current model, the parameters
of the channel law are fixed and known a priori to both trans-
mitter and receiver. Indeed, our codebook and decoding rule de-
pend on them. In practice, however, such side information is
often time-varying, and only partially or imperfectly available
at the transmitter and/or receiver.

Still another important extension involves incorporating feed-
back into the model, and the transmission of sequences of mes-
sages. Among other questions, there is a need to understand the
impact of feedback in such asynchronous settings, and any qual-
itative differences from the synchronous setting. Naturally, there
are many possible feedback mechanism models. In one simple
model, the receiver is able to send to the transmitter—without
error or delay—a single acknowledgment (ACK) bit when it
has successfully decoded a message. Other models allow more
extensive feedback. In any such analysis, it will be important
to understand the degree to which performance is sensitive to
the assumption of noiseless feedback. Indeed, if the feedback is
noisy, the receiver’s decision may be wrongly recognized by the
transmitter, which can result in a loss of message synchroniza-
tion between transmitter and receiver (e.g., the receiver has not
yet decoded the first message while the transmitter has already
started to send the second one). Ultimately, this potential addi-
tional source of asynchronism needs to be taken into account.

It is also worth exploring extensions of the model to the case
in which the transmitter may have no message to send in the
designated transmission window. For instance, a message is sent
with probability ; otherwise, no message is sent. For this
setting, natural scalings between and the asynchronism level
remain to be investigated.

Finally, exploring variations on our basic model is also worth-
while. As one example, one might consider other ways to cap-
ture the requirement of quick decoding. In some sense, our for-
mulation investigates aspects of the tradeoff between the code
rate and the average reaction delay . Equiva-
lently, it examines code rates achievable under the expectation
constraint , as a function of . In such a formula-
tion, the communication rates obtained for a given

are comparatively low under exponential asynchronism. This
is because even though the probability of missing the codeword
is exponentially small, once the codeword is missed we pay a
penalty in reaction delay that is on the order of the asynchro-
nism level, i.e., exponentially large. As a result, it may be useful
to examine code rates achievable under a typicality constraint of
the form , which may yield higher effec-
tive communication rates .

APPENDIX I
PROOF OF LEMMA 6

The binomial expansion for takes the form (see,
e.g., [14, eq. (12.25)])
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Using the hypotheses on and gives for
, whence

for some .

APPENDIX II

Lemma 7: For any distributions and ,
and any

(162)

Proof: If , the claim holds trivially, since the
left- and right-hand sides of (162) are both zero. Hence, it suf-
fices to restrict our attention to the case in the
sequel. Let us use and to denote the left- and
right-hand sides of (162), respectively.

Proceeding, we define

Since and appear symmetrically in the definition of
, we can without penalty impose the additional constraint

that in the definition, from which
we obtain that is optimizing, and as a result

Hence, it suffices to show that

(163)

since .

To verify (163), it is sufficient to establish the following two
simple claims:

is convex in (Claim 1)

(Claim 2)

Indeed, from these two claims we have

(164)

(165)

where to obtain (164) we have used Claim 1, and where to obtain
(165) we have used Claim 2. Finally, using (165) and that
is a nonincreasing function of , we obtain

and hence (163) follows.
It remains only to establish our two claims.
For Claim 1, let and denote the optimizing distributions

for and , respectively, for some , i.e.,

and

and

Hence, for with we have, using
the convexity of in

(166)

(167)

so we establish Claim 1 by observing that

(168)

where to obtain (168) we have used the convexity of
in .

For Claim 2, if the claim holds trivially. For the case
, we use proof by contradiction. Suppose that the opti-

mizing distribution for is and satisfies .
Then define with . By the con-
vexity of in we have

and by the convexity of in we have
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where the last inequality holds provided that

Thus, with such a choice for , we see that is better than ,
so cannot be the optimizing distribution for , which
establishes Claim 2.
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