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Abstract—A rateless code—i.e., a rate-compatible family of
codes—has the property that codewords of the higher rate codes
are prefixes of those of the lower rate ones. A perfect family
of such codes is one in which each of the codes in the family is
capacity-achieving. We show by construction that perfect rateless
codes with low-complexity decoding algorithms exist for additive
white Gaussian noise channels. Our construction involves the
use of layered encoding and successive decoding, together with
repetition using time-varying layer weights. As an illustration of
our framework, we design a practical three-rate code family. We
further construct rich sets of near-perfect rateless codes within our
architecture that require either significantly fewer layers or lower
complexity than their perfect counterparts. Variations of the basic
construction are also developed, including one for time-varying
channels in which there is no a priori stochastic model.

Index Terms—Incremental redundancy, rate-compatible punc-
tured codes, hybrid ARQ (H-ARQ), static broadcasting.

I. INTRODUCTION

T HE design of effective “rateless” codes has received
renewed strong interest in the coding community, moti-

vated by a number of emerging applications. Such codes have a
long history, and have gone by various names over time, among
them incremental redundancy codes, rate-compatible punctured
codes, hybrid automatic repeat request (ARQ) type II codes,
and static broadcast codes [1]–[10]. This paper focuses on the
design of such codes for average power limited additive white
Gaussian noise (AWGN) channels. Specifically, we develop
techniques for mapping standard good single-rate codes for the
AWGN channel into good rateless codes that are efficient, prac-
tical, and can operate at rates of multiple b/s/Hz. As such, they
represent an attractive alternative to traditional hybrid ARQ
solutions for a variety of wireless and related applications.

More specifically, we show that the successful techniques
employed to construct low-complexity codes for the standard
AWGN channel—such as those arising out of turbo and low-
density parity check (LDPC) codes—can be leveraged to con-
struct rateless codes. In particular, we develop an architecture in
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which a single codebook designed to operate at a single SNR is
used in a straightforward manner to build a rateless codebook
that operates at many SNRs.

The encoding in our architecture exploits three key ingredi-
ents: layering, repetition, and time-varying weighting. By lay-
ering, we mean the creation of a code by a linear combination
of subcodes. By repetition, we mean the use of simple linear
redundancy. Finally, by time-varying weighting, we mean that
the (complex) weights in the linear combinations in each copy
are different. We show that with the appropriate combination of
these ingredients, if the base codes are capacity-achieving, so
will be the resulting rateless code.

In addition to achieving capacity in our architecture, we seek
to ensure that if the base code can be decoded with low com-
plexity, so can the rateless code. This is accomplished by im-
posing the constraint that the layered encoding be successively
decodable—i.e., that the layers can be decoded one at a time,
treating as yet undecoded layers as noise.

Hence, our main result is the construction of ca-
pacity-achieving, low-complexity rateless codes, i.e., rateless
codes constructed from layering, repetition, and time-varying
weighting, that are successively decodable.

The paper is organized as follows. In Section II we put the
problem in context and summarize related work and approaches.
In Section III we introduce the channel and system model. In
Section IV we motivate and illustrate our construction with a
simple special-case example. In Section V we develop our gen-
eral construction and show that within it exist perfect rateless
codes for at least some ranges of interest, and in Section VI
we develop and analyze specific instances of our codes gener-
ated numerically. In Section VII, we show that within the con-
straints of our construction rateless codes for any target ceiling
rate and range can be constructed that are arbitrarily close to per-
fect in an appropriate sense. In Section VIII we make some com-
ments on design and implementation issues, and in Section IX
we describe the results of simulations with our constructions.
In Section X, we discuss and develop simple extensions of our
basic construction to time-varying channels. Finally, Section XI
provides some concluding remarks.

II. BACKGROUND

From a purely information theoretic perspective the problem
of rateless transmission is well understood; see Shulman [11]
for a comprehensive treatment. Indeed, for channels having one
maximizing input distribution, a codebook drawn independently
and identically distributed (i.i.d.) at random from this distribu-
tion will be good with high probability, when truncated to (a
finite number of) different lengths. Phrased differently, in such
cases random codes are rateless codes.

Constructing good codes that also have computationally ef-
ficient encoders and decoders requires more effort. A remark-
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able example of such codes for erasure channels are the recent
Raptor codes of Shokrollahi [12], which build on the LT codes
of Luby [13], [14]. An erasure channel model (for packets) is
most appropriate for rateless coding architectures anchored at
the application layer, where there is little or no access to the
physical layer.

Apart from erasure channels, there is a growing interest in
exploiting rateless codes closer to the physical layer, where
AWGN models are more natural; see, e.g., [15] and the refer-
ences therein. Much less is known about the limits of what is
possible in this realm, which has been the focus of traditional
hybrid ARQ research.

One line of work involves extending Raptor code construc-
tions to binary-input AWGN channels (among others). In this
area, [16], [17] have shown that no degree distribution allows
such codes to approach capacity simultaneously at different
signal to noise ratios (SNRs). Nevertheless, this does not rule
out the possibility that such codes, when suitably designed, can
be near capacity at multiple SNRs.

A second approach is based on puncturing of low-rate ca-
pacity-approaching binary codes such as turbo and LDPC codes
[3], [8], [9], [15], [18], [19], or extending a higher-rate such
code, or using a combination of code puncturing and exten-
sion [20]. When iterative decoding is involved, such approaches
lead to performance tradeoffs at different rates—improving per-
formance at one rate comes at the expense of the performance
at other rates. While practical codes have been constructed in
this manner [3], [20], it remains to be understood how close, in
principle, one can come to capacity simultaneously at multiple
SNRs, particularly when not all SNRs are low.

Finally, for the higher rates typically of interest, which ne-
cessitate higher-order (e.g., 16-QAM and larger) constellations,
the modulation used with such binary codes becomes impor-
tant. In turn, such modulation tends to further complicate the
iterative decoding, imposing additional code design challenges.
Constellation rearrangement and other techniques have been de-
veloped to at least partially address such challenges [21]–[24],
but as yet do not offer a complete solution. Alternatively, suit-
ably designed binary codes can, in principle, be combined with
bit-interleaved coded modulation (BICM) for such applications;
for example, [25] explores the design of Raptor codes for this
purpose, and shows by example that the gaps to capacity need
not be too large, at least provided the rates are not too high.

From the perspective of the broader body of related work de-
scribed above, the present paper represents somewhat of a de-
parture in approach to the design of rateless codes and hybrid
ARQ systems. However, with this departure come additional
complementary insights, as we will develop.

III. CHANNEL AND SYSTEM MODEL

The codes we construct are designed for a complex AWGN
channel

y x z (1)

where is a channel gain,1 x is a vector of input symbols,
y is the vector of channel output symbols, and z is a noise
vector of i.i.d. complex, circularly-symmetric Gaussian
random variables of variance , independent across blocks

. The channel input is limited to average power
per symbol. In our model, the channel gain and noise variance

are known a priori at the receiver but not at the transmitter.2

The block length has no important role in the analysis that
follows. It is, however, the block length of the base code used in
the rateless construction. As the base code performance controls
the overall code performance, to approach channel capacity
must be large.

The encoder transmits a message by generating a se-
quence of code blocks (incremental redundancy blocks) x
x . The receiver accumulates sufficiently many received
blocks y y to recover . The channel gain may be
viewed as a variable parameter in the model; more incremental
redundancy is needed to recover when is small than when

is large.
An important feature of this model is that the receiver always

starts receiving blocks from index . It does not receive
an arbitrary subsequence of blocks, as might be the case if one
were modeling a broadcast channel that permits “tuning in” to
an ongoing transmission.

We now define some basic terminology and notation. Unless
noted otherwise, all logarithms are base 2, all symbols denote
complex quantities, and all rates are in bits per complex symbol
(channel use), i.e., b/s/Hz. We use for transpose and for
Hermitian (conjugate transpose) operators. Vectors and matrices
are denoted using bold face, random variables are denoted using
sans-serif fonts, while sample values use regular (serif) fonts.

We define the ceiling rate of the rateless code as the highest
rate at which the code can operate, i.e., the effective rate if the
message is decoded from the single received block y ; hence, a
message consists of information bits. Associated with this
rate is an SNR threshold, which is the minimum SNR required
in the realized channel for decoding to be possible from this
single block. This SNR threshold can equivalently be expressed
in the form of a channel gain threshold. Similarly, if the mes-
sage is decoded from received blocks, the corresponding
effective code rate is , and there is a corresponding SNR
(and channel gain) threshold. Thus, for a rateless encoding con-
sisting of blocks, there is a sequence of associated SNR
thresholds.

Finally, as in the introduction, we refer to the code out of
which our rateless construction is built as the base code, and
the associated rate of this code as simply the base code rate. At
points in our analysis we assume that a good base code is used
in the code design, i.e., that the base code is capacity-achieving
for the AWGN channel, and thus has the associated properties
of such codes. This allows us to distinguish losses due to the
code architecture from those due to the choice of base code.

1More general models for � will be discussed later in the paper.
2An equivalent model would be a broadcast channel in which a single en-

coding of a common message is being sent to a multiplicity of receivers, each
experiencing a different SNR.
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IV. MOTIVATING EXAMPLE

To develop initial insights, we construct a simple low-com-
plexity perfect rateless code that employs two layers of coding
to support a total of two redundancy blocks.

We begin by noting that for the case of a rateless code with
two redundancy blocks the channel gain may be classified
into three intervals based on the number of blocks needed for
decoding. Let and denote the two associated channel gain
thresholds. When decoding requires only one block.
When decoding requires two blocks. When

decoding is not possible. The interesting cases occur
when the gain is as small as possible to permit decoding. At
these threshold values, for one-block decoding the decoder sees
(aside from an unimportant phase shift)

y x z (2)

while for two-block decoding the decoder sees

y x z (3)

y x z (4)

In general, given any particular choice of the ceiling rate
for the code, we would like the resulting SNR thresholds to be as
low as possible. To determine lower bounds on these thresholds,
let

(5)

and note that the capacity of the one-block channel is

(6)

while for the two-block channel the capacity is

(7)

bits per channel use. A “channel use” in the second case consists
of a pair of transmitted symbols, one from each block.

In turn, since we deliver the same message to the receiver for
both the one- and two-block cases, the smallest values of and

we can hope to achieve occur when

(8)

Thus, we say that the code is perfect if it is decodable at these
limits.

We next impose that the construction be a layered code, and
that the layers be successively decodable.

Layering means that we require the transmitted blocks to be
linear combinations of two base codewords c and c

, as follows:3

x c c (9)

x c c (10)

3In practice, the codebooks � and � should not be identical, though they
can for example be derived from a common base codebook via scrambling. This
point is discussed further in Section VIII.

Base codebook has rate and base codebook has rate
, where , so that total rate of the two codebooks

equals the ceiling rate. We assume for this example that both
codebooks are capacity-achieving, so that the codeword com-
ponents are i.i.d. Gaussian. Furthermore, for convenience, we
scale the codebooks to have unit power, so the power constraint
instead enters through the constraints

(11)

(12)

Finally, the successive decoding constraint in our system means
that the layers are decoded one at a time to keep complexity low
(on order of the base code complexity). Specifically, the decoder
first recovers c while treating c as additive Gaussian noise,
then recovers c using c as side information.

We now show that perfect rateless codes are possible within
these constraints by constructing a matrix so that the
resulting code satisfies (8). Finding an admissible is simply
a matter of some algebra: in the one-block case we need

c y c (13)

c y (14)

and in the two-block case we need

c y y c (15)

c y y (16)

The subscripts and are a reminder that these mutual
information expressions depend on the channel gain, and the
scalar variables denote individual components from the input
and output vectors.

While evaluating (13)–(15) is straightforward, calculating the
more complicated (16), which corresponds to decoding c in
the two-block case, can be circumvented by a little additional
insight. In particular, while c causes the effective noise in the
two blocks to be correlated, observe that a capacity-achieving
code requires and to be i.i.d. Gaussian. As c and c
are Gaussian, independent, and equal in power by assumption,
this occurs only if the rows of are orthogonal. Moreover, the
power constraint ensures that these orthogonal rows have the
same norm, which implies that is a scaled unitary matrix.

The unitary constraint has an immediate important conse-
quence: the per-layer rates and must be equal, i.e.,

(17)

This occurs because the two-block case decomposes into two
parallel orthogonal channels of equal SNR. We see in the next
section that a comparable result holds for any number of layers.

From the definitions of and [cf. (5) and (6)], and the
equality (8), we find that

(18)

Also, from (13) and (17), we find that

(19)
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Combining (18) and (19) yields

(20)

The constraint that be a scaled unitary matrix, together with
the power constraint , implies

(21)

(22)

(23)

which completely determines the squared modulus of the entries
of .

Now, the mutual information expressions (13)–(16) are unaf-
fected by applying a common complex phase shift to any row
or column of , so without loss of generality we take the first
row and first column of to be real and positive. For to be
a scaled unitary matrix, must then be real and negative. We
have thus shown that, if a solution to (13)–(16) exists, it must
have the form

(24)

Conversely, it is straightforward to verify that (13)–(16) are sat-
isfied with this selection. Thus (24) characterizes the (essen-
tially) unique solution .4

In summary, we have constructed a two-layer, two-block per-
fect rateless code from linear combinations of codewords drawn
from equal-rate codebooks. Moreover, decoding can proceed
one layer at a time with no loss in performance, provided the
decoder is cognizant of the correlated noise caused by unde-
coded layers. In the sequel we consider the generalization of our
construction to an arbitrary number of layers and redundancy
blocks.

V. RATELESS CODES WITH LAYERED ENCODING

AND SUCCESSIVE DECODING

The rateless code construction we pursue is as follows [26].
First, we choose the range (maximum number of redundancy
blocks), the ceiling rate , the number of layers , and finally
the associated codebooks . We will see presently that
the base codebooks must have equal rate when con-
structing perfect rateless codes with , and in any case
using equal rates has the advantage of allowing the codebooks
for each layer to be derived from a single base code.

Given codewords c , the redundancy
blocks x x take the form

x
...

x

c
...

c

(25)

where is an matrix of complex gains and where x for
each and c for each are row vectors of length . The power

4Interestingly, the symmetry in (24) implies that the construction remains per-
fect even if the two redundancy blocks are received in swapped order. This is
not true of our other constructions.

Fig. 1. Rateless code construction with four layers and three blocks of redun-
dancy. Each block is a weighted linear combination of the (� -element) base
codewords c �c � � � � �c , where � , the ��� ��th element of�, denotes the
weight for layer � of block �. In this illustration, the thickness of a layer is a
graphical depiction of the magnitude of its associated gain (power).

constraint enters by limiting the rows of to have squared norm
and by normalizing the codebooks to have unit power. With

this notation, the elements of the th row of are the weights
used in constructing the th redundancy block from the code-
words.5 In the sequel we use to denote the th entry of

and to denote the upper-left submatrix of .6

An example of this layered rateless code structure is depicted
in Fig. 1. Each redundancy block contains a repetition of the
codewords used in the earlier blocks, but with a different com-
plex scaling factor. The code structure may therefore be viewed
as a hybrid of layering and repetition. Note that, absent assump-
tions on the decoder, the order of the layers is not important.

In addition to the layered code structure, there is additional
decoding structure, namely that the layered code be successively
decodable. Specifically, to recover the message, we first decode
c , treating c c as (colored) noise, then decode
c , treating c c as noise, and so on. Thus, our
aim is to select so that capacity is achieved for any number

of redundancy blocks subject to the succes-
sive decoding constraint. Minimum mean-square error (MMSE)
combining of the available redundancy blocks conveniently ex-
ploits the repetition structure in the code when decoding each
layer.

Both the layered repetition structure (25) and the successive
decoding constraint impact the degree to which we can approach
a perfect code. Accordingly, we examine the consequences of
each in turn.

We begin by examining the implications of the layered rep-
etition structure (25). When the number of layers is at least
as large as the number of redundancy blocks , such layering
does not limit code performance. But when , it does.
In particular, whenever the number of redundancy blocks re-
quired by the realized channel exceeds , there is necessarily
a gap between the code performance and capacity. To see this,

5The �th column of � also has a useful interpretation. In particular, one can
interpret the construction as equivalent to a “virtual” code-division multiple-
access (CDMA) system with � users, each corresponding to one layer of the
rateless code. With this interpretation, the signature (spreading) sequence for
the �th virtual user is the �th column of �.

6Where necessary, we adopt the convention that � � �.
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observe that (25) with (1), restricted to the first blocks, de-
fines a linear -input -output AWGN channel, the capacity of
which is at most

(26)

Only for does this match the capacity of a general
-block AWGN channel, viz.,

(27)

Ultimately, for the problem is that an -fold linear
combination cannot fill all degrees of freedom afforded by the

-block channel.
An additional penalty occurs when we combine the layered

repetition structure with the requirement that the code be rate-
less. Specifically, for , there is no choice of gain ma-
trix that permits (26) to be met with equality simultaneously
for all . A necessary and sufficient condition for
equality is that the rows of be orthogonal for and
the columns of be orthogonal for . This follows
because reaching (26) for requires that the linear com-
bination of codebooks create an i.i.d. Gaussian sequence. In
contrast, reaching (26) for requires that the linear com-
bination inject the codebooks into orthogonal subspaces, so
that a fraction of the available degrees of freedom are oc-
cupied by i.i.d. Gaussians (the rest being empty).

Unfortunately, the columns of cannot be orthogonal
simultaneously for all ; orthogonal -dimensional vec-
tors (with nonzero entries) cannot remain orthogonal when trun-
cated to their first dimensions. Thus (26) determines only
a lower bound on the loss due to the layering structure (25). For-
tunately, the additional loss encountered in practice turns out to
be quite small, as we demonstrate numerically as part of the next
section.

When , the orthogonality requirement forces to
be a scaled unitary matrix. Upon receiving the final redundancy
block , the problem decomposes into parallel chan-
nels with equal SNR, which in turn implies that the rate of each
layer must equal .

A lower bound on loss incurred by the use of insufficiently
many layers is readily obtained by comparing (26) and (27).
Given a choice of ceiling rate for the rateless code, (26) im-
plies that for rateless codes constructed using linear combina-
tions of base codes, the smallest channel gain for which
it’s possible to decode with blocks is

(28)

By comparison, (27) implies that without the layering constraint
the corresponding channel gain thresholds are

(29)

The resulting performance loss caused by the layered
structure as calculated from (28) and (29) is shown in decibels

TABLE I
LOSSES � �� IN DECIBELS DUE TO LAYERED STRUCTURE IMPOSED ON A

RATELESS CODE OF CEILING RATE � � � B/S/HZ, AS A FUNCTION

OF THE NUMBER OF LAYERS � AND REDUNDANCY BLOCKS �

in Table I for a target ceiling rate of bits/symbol. For
example, if an application requires redundancy blocks,
a 3-layer code has a loss of less than 2 dB at , while a
5-layer code has a loss of less than 0.82 dB at .

As Table I reflects—and as can be readily verified analyti-
cally—for a fixed number of layers and a fixed base code rate

, the performance loss attributable to the imposi-
tion of layered encoding grows monotonically with the number
of blocks , approaching the limit

(30)

Thus, in applications where the number of incremental redun-
dancy blocks is very large, it’s advantageous to keep the base
code rate small. For example, with a base code rate of 1/2 bit per
complex symbol (implemented, for example, using a rate-1/4 bi-
nary code) the loss due to layering is at most 0.78 dB, while with
a base code rate of 1 bit per complex symbol the loss is at most
1.6 dB.

We now determine the additional impact the successive
decoding requirement has on our ability to approach capacity,
and more generally what constraints it imposes on . We
continue to incorporate the power constraint by taking the
rate- codebooks to have unit power and the
rows of to have squared norm . Since our aim is to em-
ploy codebooks designed for (non-fading) Gaussian channels,
we make the further assumption that the codebooks have
constant power, i.e., that they satisfy the per-symbol energy
constraint for all layers and time indices

, where the expectation is taken over equiprobable
messages . Additional constraints on
now follow from the requirement that the mutual information
accumulated through any block at each layer be large
enough to permit successive decoding.

Concretely, suppose we have received blocks . Let
the optimal threshold channel gain be defined as in (29).
Suppose further that layers have been successfully
decoded, and define

v
...

v

c
...

c

z
...

z

(31)

as the received vectors without the contribution from layers
.
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Then, following standard arguments, with independent
equiprobable messages for each layer, the probability of de-
coding error for layers can be made vanishingly small
with increasing block length only if the mutual information
between input and output is at least as large as the combined
rate of the codes . That is, when equals the
optimal threshold gain , successive decoding requires

c c y y c (32)

c c v v (33)

v v v v c c

(34)

(35)

(36)

where is an appropriately sized identity matrix.
The inequality (35) relies on the assumption that the codebooks
have constant power, and it holds with equality if the com-
ponents of c c are jointly Gaussian, which by
Cramer’s theorem requires the components of c c to be
jointly Gaussian.

Our ability to choose to either exactly or approximately
satisfy (36) for all and each de-
termines the degree to which we can approach capacity. It is
straightforward to see that there is no slack in the problem; (36)
can be satisfied simultaneously for all and only if the in-
equalities are all met with equality. Beyond this observation,
however, the conditions under which (36) may be satisfied are
not obvious.

Characterizing the set of solutions for when
was done in Section IV [see (24)]. Characterizing the set of

solutions when requires more work. It is shown
in Appendix A that, when it exists, a solution must have the
form

(37)

where and where are complex
phasors. The desired phasors—or a proof of nonexistence—may
be determined from the requirement that be a scaled unitary
matrix. Using this observation, it is shown in Appendix A that
a solution exists and is unique (up to complex conjugate) for
all bits per complex symbol,
but no choice of phasors results in a unitary for larger values
of .

For example, using (37) with bits/symbol we find that

where

TABLE II
PERCENT SHORTFALL IN RATE FOR A NUMERICALLY-OPTIMIZED

RATELESS CODE WITH � � �� BLOCKS, � � � LAYERS,
AND A CEILING RATE OF � � � B/S/HZ

For the algebra becomes daunting, though we conjec-
ture that exact solutions and hence perfect rateless codes exist
for all , for at least some nontrivial values of .7

For perfect constructions cannot exist. As developed
earlier in this section, even if we replace the optimum threshold
channel gains defined via (29) with suboptimal gains of
(28) determined by the layering bound (26), it is still not pos-
sible to satisfy (36). However, one can come close. While the
associated analysis is nontrivial, such behavior is easily demon-
strated numerically, which we show as part of the next section.

VI. NUMERICAL EXAMPLES

In this section, we consider numerical constructions both for
the case and for the case . Specifically, we have
experimented with numerical optimization methods to satisfy
(36) for up to redundancy blocks, using the threshold
channel gains defined via (28) in place of those defined via
(29) as appropriate when the number of blocks exceeds the
number of layers .

For the case , for each of , we found
constructions with bits/symbol that come within 0.1%
of satisfying (36) subject to (29), and often the solutions come
within 0.01%. This provides powerful evidence that perfect rate-
less codes exist for a wide range of parameter choices.

For the case , despite the fact that there do not exist
perfect codes, in most cases of interest one can come remark-
ably close to satisfying (36) subject to (28). Evidently mutual
information for Gaussian channels is quite insensitive to modest
deviations of the noise covariance away from a scaled identity
matrix.

As an example, Table II shows the rate shortfall in meeting
the mutual information constraints (36) for an layer code
with redundancy blocks, and a target ceiling rate

. The associated complex gain matrix is

The worst case loss is less than 1.5%; this example is typical in
its efficiency.

7In recent calculations following the above approach, Ayal Hitron at Tel Aviv
University has determined that exact solutions exist in the � � � � � case
for rates in the range � � ���������.
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The total loss of the designed code relative to a perfect rateless
code is, of course, the sum of the successive decoding and lay-
ered encoding constraint losses. Hence, the losses in Tables I and
II are cumulative. As a practical matter, however, when ,
the layered encoding constraint loss dwarfs that due to the suc-
cessive decoding constraint: the overall performance loss arises
almost entirely from the code’s inability to occupy all available
degrees of freedom in the channel. Thus, this overall loss can be
estimated quite closely by comparing (27) and (26). Indeed this
is reflected in our example, where the loss of Table I dominates
over that of Table II.

VII. EXISTENCE OF NEAR-PERFECT RATELESS CODES

While the closed-form construction of perfect rateless codes
subject to layered encoding and successive decoding becomes
more challenging with increasing code range , the construc-
tion of codes that are at least nearly perfect is comparatively
straightforward. In the preceding section, we demonstrated this
numerically. In this section, we prove this analytically. In par-
ticular, we construct rateless codes (of any desired ceiling rate)
that are arbitrarily close to perfect in an appropriate sense, pro-
vided enough layers are used. We term these near-perfect rate-
less codes. The code construction we present is applicable to
arbitrarily large and also allows for simpler decoding than
that required in the preceding development.

The near-perfect codes we develop in this section [27] are
closely related to those in Section V. However, there are a few
differences. We retain the layered construction, but instead of
using a single complex weight for the codeword at each layer
(and block), we use a single weight magnitude for each code-
word and vary the phase of the weight from symbol to symbol
within the codeword in each layer (and block). Moreover, in our
analysis, the phases are chosen randomly, corresponding to eval-
uating an ensemble of codes. The realizations of these random
phases are known to and exploited by the associated decoders.
As with the usual random coding development, we establish the
existence of good codes in the ensemble by showing that the av-
erage performance is good.

These modifications, and in particular the additional degrees
of freedom in the code design, simplify the analysis—at the ex-
pense of some slightly more cumbersome notation. Addition-
ally, because of these differences, the particular gain matrices in
this section cannot be easily compared with those of Section V,
but we do not require such comparisons.

A. Encoding

As discussed above, in our approach to perfect constructions
in Section V, we made each redundancy block a linear combi-
nation of the base codewords, where the weights are the cor-
responding row of the combining matrix , as (25) indicates.
Each individual symbol of a particular redundancy block is,
therefore, a linear combination of the corresponding symbols in
the respective base codewords, with the combining matrix being
the same for all such symbols.

Since for the codes of this section we allow the combining
matrix to vary from symbol to symbol in the construction of
each redundancy block, we augment our notation. In particular,

using c and x to denote the th elements of codeword
c and redundancy block x , respectively, we have [cf. (25)]

x
...

x

G

c
...

c

(38)

The value of plays no role in our development and may be
taken arbitrarily large. Moreover, as before, the power constraint
enters by limiting the rows of G to have a squared norm
and by normalizing the codebooks to have unit power.

It suffices to restrict our attention to G of the form

G D (39)

where is an (deterministic) power allocation matrix
with entries that do not vary within a block

...
. . .

... (40)

and D is a (random) phase-only “dither” matrix of the form

d d
...

. . .
...

d d

(41)

with denoting elementwise multiplication. In our analysis, the
d are all i.i.d. in , and , and are independent of all other
random variables, including noises, messages, and codebooks.
As we shall see below, the role of the dither is to decorrelate
pairs of random variables, hence it suffices for d to take
values and with equal probability.

B. Decoding

To obtain a near-perfect rateless code, it is sufficient to em-
ploy a successive cancellation decoder with simple maximal
ratio combining (MRC) of the redundancy blocks. While, in
principle, an MMSE-based successive cancellation decoder en-
ables higher performance, as we will see, an MRC-based one is
sufficient for our purposes, and simplifies the analysis. Indeed,
although the encoding we choose creates a per-layer channel
that is time-varying, the MRC-based successive cancellation de-
coder effectively transforms the channel back into a time-in-
variant one, for which any of the traditional low-complexity ca-
pacity-approaching codes for the AWGN channel are suitable
as a base code in the design.8

The decoder operation is as follows, assuming the SNR is
such that decoding is possible from redundancy blocks. To
decode the th (top) layer, the dithering is first removed from
the received waveform by multiplying by the conjugate dither

8More generally, the MRC-based decoder is particularly attractive for
practical implementation. Indeed, as each redundancy block arrives a sufficient
statistic for decoding can be accumulated without the need to retain earlier
blocks in buffers. The computational cost of decoding thus grows linearly with
block length while the memory requirements do not grow at all. This is much
less complex than the MMSE decoder discussed in the development of the
codes of Section V.
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sequence for that layer. Then, the blocks are combined into
a single block via the appropriate MRC for that layer. The mes-
sage in this th layer is then decoded, treating the undecoded
layers as noise, and its contribution subtracted from the received
waveform. The st layer is now the top layer, and the
process is repeated, until all layers have been decoded. Note that
the use of MRC in decoding is equivalent to treating the unde-
coded layers as white (rather than structured) noise, which is the
natural approach when the dither sequence structure in those un-
decoded (lower) layers is ignored in decoding the current layer
of interest.

We now introduce notation that allows the operation of the
decoder to be expressed more precisely. We then determine the
effective SNR seen by the decoder at each layer of each redun-
dancy block.

Since G is drawn i.i.d., the overall channel is i.i.d., and
thus we may express the channel model in terms of an arbitrary
individual element in the block. Specifically, our received wave-
form can be expressed as [cf. (1) and (25)]

y

y
...

y

G

c
...

c

z
...

z

(42)

where G D, with G denoting the arbitrary element in
the sequence G , and where y is the corresponding received
symbol from redundancy block (and similarly for c z D).

If layers have been successively decoded
from redundancy blocks, and their effects subtracted from the
received waveform, the residual waveform is denoted by

v G

c
...

c

z
...

z

(43)

where we continue to let G denote the upper-left sub-
matrix of G, and likewise for D and . As additional no-
tation, we let g denote the -vector formed from the upper

rows of the th column of G, whence

G g g g (44)

and likewise for d and .
With such notation, the decoding can be expressed as follows.

Starting with v y, decoding proceeds. After layers
and higher have been decoded and removed, we decode from
v . Writing

v d c v (45)

the operation of removing the dither can be expressed as

d v c v (46)

where

v d v (47)

The MRC decoder treats the dither in the same manner as noise,
i.e., as a random process with known statistics but unknown re-
alization. Because the entries of the dither matrix are chosen to

be i.i.d. random phases independent of the messages, the entries
of D and c c are jointly and individually uncor-
related, and the effective noise v seen by the MRC decoder

has diagonal covariance v v v .
The effective SNR at which this th layer is decoded from

blocks via MRC is thus

(48)

where

(49)

Note that we have made explicit the dependency of these per-
layer per-block SNRs on .

C. Efficiency

The use of random dither at the encoder and MRC at the de-
coder both cause some loss in performance relative to the per-
fect rateless codes presented earlier. In this section we show that
these losses can be made small.

When a coding scheme is not perfect, its efficiency quantifies
how close the scheme is to perfect. There are ultimately several
ways one could measure efficiency that are potentially useful
for engineering design. Among these, we choose the following
efficiency notion.

1) We find the ideal thresholds for a perfect code of rate
.

2) We determine the highest rate such that an imperfect
code designed at rate is decodable with redundancy
blocks when the channel gain is , for all .

3) We measure efficiency by the ratio , which is al-
ways less than unity.

With this notion of efficiency, we further define a coding
scheme as near-perfect if the efficiency so-defined approaches
unity when sufficiently many layers are employed.

The efficiency of our scheme ultimately depends on the
choice of our power allocation matrix (40). We now show
the main result of this section: provided there exists a power
allocation matrix such that for each and

(50)

with as defined in (49), a near-perfect rateless
coding scheme results. We prove the existence of such a
power allocation—and develop an interpretation of (50)—in
Appendix B, and thus focus on our main result in the sequel.

We establish our main result by finding a lower bound on the
average mutual information between the input and output of the
channel. Upon receiving blocks with channel gain , and
assuming layers are successfully decoded, let
be the mutual information between the input to the th layer and
the channel output. Then

c v d (51)

c c v d (52)
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Fig. 2. Lower bound on efficiency of the near-perfect rateless code. The top
and bottom curves are the middle and right-hand bounds of (59), respectively.

c c v (53)

c c v (54)

(55)

where (52) follows from (46)–(47), (53) follows from the inde-
pendence of c and d , and (54) obtains by replacing v
with a Gaussian random vector v of covariance v .
Lastly, to obtain (55) we have used (48) for the post-MRC SNR.

Now, if the assumption (50) is satisfied, then the right-hand
side of (55) is further bounded for all by

(56)

where we have applied the inequality
(valid for ) to (50) to conclude that

. Note that the lower bound (56) may be
quite loose; for example, when .

Thus, if we design each layer of the code for a base code rate
of

(57)

(56) ensures decodability after blocks are received when the
channel gain is , for .

Finally, rewriting (57) as

(58)

the efficiency of the conservatively-designed layered repeti-
tion code is bounded by

(59)

which approaches unity as as claimed.
In Fig. 2, the efficiency bounds (59) are plotted as a function

of the base code rate . As a practical matter, our bound
implies, for instance, that to obtain 90% efficiency requires a

base code of rate of roughly 1/3 bits per complex symbol. Note,
too, that when the number of layers is sufficiently large that the
SNR per layer is low, a binary code may be used instead of a
Gaussian codebook, which may be convenient for implementa-
tion. For example, a code with rate 1/3 bits per complex symbol
may be implemented using a rate-1/6 LDPC code with binary
antipodal signaling.

VIII. DESIGN AND IMPLEMENTATION ISSUES

In this section, we comment on some issues that arise in the
development and implementation of our rateless code construc-
tions; additional implementation issues are addressed in [28].

First, one consequence of our development of perfect rateless
codes for is that all layers must have the same rate .
This does not seem to be a serious limitation, as it allows a single
base codebook to serve as the template for all layers, which
in turn generally decreases the implementation complexity of
the encoder and decoder. The codebooks used for
the layers should not be identical, however, for otherwise a
naive successive decoder might inadvertently swap messages
from two layers or face other difficulties that increase the proba-
bility of decoding error. A simple cure to this problem is to apply
pseudorandom phase scrambling to a single base codebook to
generate the different codebooks needed for each layer. Pseu-
dorandom interleaving would have a similar effect.

Second, it should be emphasized that a layered code designed
with the successive decoding constraint (36) can be decoded in
a variety of ways. Because the undecoded layers act as colored
noise, an optimal decoder should take this into account, for
example by using a MMSE combiner on the received blocks
y as mentioned in Section V. The MMSE combining

weights change as each layer is stripped off. Alternatively,
some or all of the layers could be decoded jointly; this might
make sense when the decoder for the base codebook decoder is
already iterative, and could potentially accelerate convergence
compared to a decoder that treats the layers sequentially.

Third, a comparatively simple receiver is possible when all
blocks have been received from a perfect rateless code in

which . In this special case the linear combinations ap-
plied to the layers are orthogonal, hence the optimal receiver
can decode each layer independently, without successive de-
coding. This property is advantageous in a multicasting scenario
because it allows the introduction of users with simplified re-
ceivers that function only at certain rates, in this case the lowest
supported one.

Finally, we note that with an ideal rateless code, every prefix
of the code is a capacity-achieving code. This corresponds to a
maximally dense set of SNR thresholds at which decoding can
occur. By contrast, our focus in the paper has been on rateless
codes that are capacity-achieving only for prefixes whose
lengths are an integer multiple of the base block length. The
associated sparseness of SNR thresholds can be undesirable
in some applications, since when the realized SNR is between
thresholds, there is no guarantee that capacity is achieved:
the only realized rate promised by the construction is that
corresponding to the next lower SNR threshold.
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TABLE III
RATE 2/3 B/S/HZ 3GPP LTE BASE CODE EFFICIENCIES

However, as will be apparent from the simulations described
in Section IX, performance is generally much better than this
pessimistic assessment. In particular, partial blocks provide es-
sentially all the necessary redundancy to allow an appropriately
generalized decoder to operate as close to capacity as happens
with full blocks.

Nevertheless, when precise control over the performance at
a dense set of SNR thresholds is required, other approaches
can be used. For example, when the target ceiling rate is

, we can use our rateless code construction to design a
code of ceiling rate , where , and have the
decoder collect at least blocks before attempting to de-
code. With this approach, the associated rate thresholds are

. Hence, by choosing
larger values of , one can increase the density of SNR
thresholds.

IX. SIMULATIONS

Implicit in our analysis is the use of perfect base codes
and ideal (maximum likelihood) decoding. In this section,
we present simulations that further validate our rateless code
design with practical coding and decoding.

In our simulations, we use as our base code the turbo code
specified in the 3GPP LTE wireless standard [21], [22]. This par-
allel-concatenated convolutional code constructed from a pair
of 8-state constituent encoders has a rate of 2/3 bits per com-
plex symbol. This code is used in conjunction with the iterative
turbo-decoding algorithm for which it was designed.

The base code is used in both 3- and 4-layer rateless construc-
tions, corresponding to ceiling rates of and
b/s/Hz, respectively. Moreover, there are a total of 6144 in-
formation bits per layer, corresponding to a block length of

complex symbols.
Encoding proceeds as follows. Since the base code is not

ideal, it has a bit-error rate that rolls off with the operating SNR.
Let denote the SNR at which the base code achieves
a bit-error rate of . Then, using a definition analogous to that
used in Section VII-C, the efficiency of the base code is9

Thus, in computing the gain matrix , we prescale the target
rate, replacing with . Note that as a result, depends
on the target rate and the base code properties only.

For the particular base code used in the simulations, the effi-
ciencies are as given in Table III.

9One can equivalently measure the efficiency of the base code in terms of its
gap to capacity at a particular target bit-error rate. However, our chosen measure
is more natural when relating the efficiency of the base code to the rateless code
constructed from it.

In our simulation, we decode not only from integer numbers
of redundancy blocks, but also from noninteger numbers, cor-
responding to partial blocks. MMSE combining is applied on a
symbol-by-symbol basis, in conjunction with our usual succes-
sive cancellation. In particular, when the number of incremental
redundancy blocks is noninteger, then the MMSE combiner
for the first symbols of the codeword in a given
layer is constructed from the submatrix , while the
MMSE combiner for the remaining symbols
of the codeword is constructed from the submatrices .

Following combining (and cancellation), turbo decoding is
applied to the layer of interest, where the initial log-likelihood
ratios are calculated treating the symbols as corrupted by
Gaussian noise with variance determined by the effective SNR.
This effective SNR is determined from the (reciprocal of the
unbiased) mean-square error resulting from MMSE combining,
taking into account the successive cancellation. Thus, when
is noninteger, the initial log-likelihood ratios take on one value
for the symbols in the first part of the codeword, and a different
value in the second part.

The overall efficiency of the resulting rateless code, i.e.,
the fraction of capacity at which it operates, is a function of the
number of incremental redundancy blocks (or equivalently
the realized SNR in the channel). We calculate for the general
case where may be noninteger as follows. First, for a given
value of , the roll-off of the bit-error rate of the overall rate-
less code as a function of the SNR can be generated, where for
each SNR value, the corresponding MMSE combiner with suc-
cessive cancellation is used. As above, when is noninteger
two MMSE combiners are involved. The resulting bit error rate
is averaged over both the symbols within the codeword at
every layer and the layers, so that error propagation effects
are taken into account. We then let denote the SNR
at which the target bit-error rate is attained for this particular
value of , from which the efficiency of the rateless code is

(60)

where, again, we have used a notion of efficiency consistent with
earlier definitions.

The resulting efficiency plots are depicted in Fig. 3. Several
features are noteworthy. First, the efficiencies for
redundancy blocks are quite close to those of the base code
shown in Table III; typically they are at most 2–3% lower. This
suggests, at least for codes with few layers, that losses due to
the rateless architecture itself, as well as the use of iterative
decoding in the face of non-Gaussian noise from undecoded
layers, are negligible in practice, and that good base codes will
yield good rateless codes.

Second, the efficiencies do not vary significantly with the
number of redundancy blocks . Moreover, even when partial
redundancy blocks are used, the efficiency does not deteriorate.
This suggests that our rateless code constructions can operate
over a much finer-grained set of rates than our design prescribed.
However, it should be emphasized that this holds only when at
least one full redundancy block is used. When less redundancy
is used, Fig. 3 shows that efficiency falls off rapidly.
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X. EXTENSIONS TO TIME-VARYING CHANNELS

The framework of this paper can be extended to time-varying
channels in a variety of ways. As one example, the time-varying
channel can be viewed as an instance of parallel channels, and
thus a solution can be developed from a solution to the problem
of rateless coding for parallel channels. Initial work in this direc-
tion is described in, e.g., [29]–[31], [33], though much remains
to be understood about the performance limits of various con-
structions. Another approach is based on the observation that
feedback about the past channel state can significantly simplify
the problem of encoding for future transmissions [34]. It is this
approach we describe here as an illustration of potential. In par-
ticular, we show that the natural generalization of our architec-
ture is perfect (i.e., capacity-achieving), enabling the message
to be recovered with the minimum possible number of blocks
for the realized channel.

For the time-varying channel we consider, the observations
take the form

y x z (61)

where the denote a sequence of complex channel gains.
The continue to be known a priori at the receiver but not at
the transmitter.

The encoder transmits a message by generating a sequence
of incremental redundancy blocks x x . The re-
ceiver accumulates sufficiently many received blocks y y
to recover . Immediately following the transmission of
block x , the encoder is notified of . Thus, knowledge of

can be used in the construction of the redundancy
block x .

In this context, a perfect rateless code is then one in which ca-
pacity is achieved for any number of redundancy
blocks, i.e., whenever the (realized) channel gains are such that

(62)

the message can be recovered with high probability.
In this development, for values of such that the right side

of (62) is less than , it is convenient to define target channel
gains required for successful decoding once block
is obtained. In particular, is defined via

(63)

whenever .
Generalizing our construction for the time-invariant case, we

first choose the range , the ceiling rate , the number of layers
, and finally the associated base codebooks . We

assume a priori that the base codebooks all have equal rate .
As with our time-invariant construction, the redundancy

blocks x x take the form (25). We emphasize that the
th row of , which constitutes the weights used in con-

structing the th redundancy block from the codewords,
will in general be a function of the (realized) channel gains

. Specifically, the th row is designed for the
channel gain sequence , i.e., we substitute
the target gain for the (as yet unknown) channel gain .
Finally, in addition to the layered code structure, we continue

Fig. 3. Practical efficiencies achieved using a rateless construction in conjunc-
tion with rate 2/3 base code. The successively lower curves correspond to target
bit-error rates of �� � �� � �� , and �� , respectively. (a) 3-layers,
3-blocks (rate range: 2/3 to 2 b/s/Hz), (b) 4-layers, 4-blocks (rate range: 8/9 to
8/3 b/s/Hz).

to impose the constraint that the layered code be successively
decodable.

Our aim is to select so that the code is perfect as defined
earlier. From the layered repetition encoding structure, we re-
quire as in the time-invariant development that the rows of
be orthogonal, while from the successive decoding constraint
we have the requirement [cf. (36)] that

(64)

for all and , with

(65)

With this model, in Appendix C we construct in closed form
perfect rateless codes for the case of redundancy blocks
and layers for rates in the range
bits per complex symbol. This construction can be viewed as the
time-varying natural generalization of that in Section IV. Estab-
lishing the existence of perfect rateless codes for larger values
of and/or requires more effort. However, following an ap-
proach analogous to that used in corresponding development for
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the time-invariant case in Section VII, we shown in Appendix D
that in the limit of a large number of layers , asymptotically
perfect codes for all values of are possible.

XI. CONCLUDING REMARKS

In this paper, motivated by hybrid ARQ requirements in wire-
less and related applications, our focus has been on the devel-
opment of a lossless framework for transforming a code good
for the AWGN channel at a single SNR into one good simul-
taneously at multiple SNRs. There are a variety of worthwhile
directions for further research.

First, while beyond the scope of the present paper, a com-
parative evaluation of methods described herein relative to, for
example, those described in Section II is likely to reveal addi-
tional insight, and uncover opportunities for further progress.

Second, while we have developed some preliminary results
on the extension of our framework to time-varying channels,
clearly this is just a beginning. For example, when , there
is flexibility in the problem formulation, and thus in how the
available degrees of freedom are allocated. As another example,
one could consider other time-variation models, such as one that
would allow to vary deterministically so long as the pattern
of variation is known in advance. Then, for one block the code
would be designed for a gain of , for two blocks the target
gains would be , for three blocks the gains would
be , and so on. Still another example would in-
volve the development of solutions for time-varying channels
without requiring SNR feedback, either with or without a sto-
chastic model for .

Other worthwhile directions include more fully developing
rateless constructions for the AWGN channel that allow de-
coding to begin at any received block, and/or to exploit an arbi-
trary subset of the subsequent blocks. Initial efforts in this direc-
tion include the faster-than-Nyquist constructions in [27], [29],
[37] and the diagonal subblock layering approach described in
[29].

Beyond the single-input, single-output (SISO) channel, many
multiterminal and multiuser extensions are also of considerable
interest. Examples of preliminary developments along these
lines include the rateless space-time code constructions in
[35], the rateless codes for multiple-access channels developed
in [36], and the approaches to rateless coding for parallel
channels examined in [29]–[31]. Indeed, such research may
lead to efficient rateless orthogonal frequency-division mul-
tiplexing (OFDM) systems and efficient rateless multi-input,
multi-output (MIMO) codes with wide-ranging applications.

Finally, extending the layered approach to rateless coding de-
veloped in this paper beyond the Gaussian channel is also a po-
tentially rich direction for further research. A notable example
would be the binary symmetric channel, where good rateless
solutions remain elusive. Preliminary work in this direction is
described in [32].

APPENDIX A
PERFECT RATELESS SOLUTION FOR

Determining the set of solutions

(66)

to (36) when as a function of the ceiling rate is
a matter of lengthy if routine algebra.

We begin by observing that any row or any column of
may be multiplied by a common phasor without changing .
Without loss of generality we may therefore take the first row
and first column of to be real and positive. Each thus repre-
sents a set of solutions , where and are diagonal
matrices in which the diagonal entries have modulus 1. The so-
lutions in the set are equivalent for most engineering purposes
and we shall therefore not distinguish them further.

We know that must be a scaled unitary matrix, scaled so
that the row and column norms are . Thus, if we somehow
determine the first two rows of , there is always a choice for
the third row: it’s the unique vector orthogonal to the first two
rows which meets the power constraint and which has first com-
ponent real and positive. Conversely, it’s easy to see that any ap-
propriately scaled unitary matrix that satisfies (36) for
and (and all ) necessarily satisfies (36) for

. We may therefore without loss of generality restrict our
attention to determining the set of solutions to the first two rows
of ; the third row comes “for free” from the constraint that
be a scaled unitary matrix.

Assume, again without loss of generality, that and
. Via (36), the first row of (which controls the first

redundancy block) must satisfy

(67)

(68)

(69)

and must also satisfy the power constraint

(70)

Thus

and

(71)

(72)

(73)

where for convenience we have introduced the change of vari-
ables .

The first column of (which controls the first layer of each
redundancy block) is also straightforward. Via (29) with
and , we have

(74)

(75)
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Using (36) for and yields

(76)

Substituting the previously computed expressions (71) and (74)
for and into (76) and solving for yields

(77)

To solve for the second row of we use (36) with
together with the requirement that the first and second

rows be orthogonal. It is useful at this stage to switch to polar
coordinates, i.e., and .

Orthogonality of the first and second rows means that

(78)

Complex conjugation is not needed here because the first row is
real. The three terms in the above expression may be viewed as
the legs of a triangle, so by the law of cosines

(79)

We now use (36) with to infer that

(80)

To expand this expression, we compute

(81)

where is the complex conjugate of the upper right entry, from
which we find

(82)

Substituting (79) into (82) to eliminate the cosine term and using
(80) yields

(83)

Finally, substituting the expressions for , and
computed above, using the power constraint

(84)

solving for , and simplifying, we arrive at

(85)

The power constraint (84) then immediately yields

(86)

The squared modulus of the entries of the last row of follow
immediately from the norm constraint on the columns:

(87)

(88)

(89)

This completes the calculation of the squared modulus of the
entries of . In summary, we have shown that has the form

(90)

where .
We must now establish the existence of suitable .

To resolve this question it suffices to consider the consequences
of the orthogonality constraint (78) on and . As remarked
at the start of this section, the last row of and hence and

come “for free” once we have the first two rows of .
Substituting the expressions for determined above into

(78) and canceling common terms yields

(91)

The right-hand side is a sum of three phasors of predetermined
magnitude, two of which can be freely adjusted in phase. In
geometric terms, the equation has a solution if we can arrange
the three complex phasors into a triangle, which is possible if
and only if the longest side of the triangle is no longer than the
sum of the lengths of the shorter sides. The resulting triangle is
unique (up to complex conjugation of all the phasors). Now, the
middle term of (91) grows faster in than the others, so for large

we cannot possibly construct the desired triangle. A necessary
condition for a solution is thus

(92)

where equality can be shown (after some manipulation) to hold
at the largest root of , i.e., at , or
equivalently . It becomes
evident by numerically plotting the quantities involved that this
necessary condition is also sufficient, i.e., a unique solution to
(91) exists for all values of in the range

and no others. Establishing this fact algebraically is an
unrewarding though straightforward exercise.

A relatively compact formula for may be found by ap-
plying the law of cosines to (91), whence

(93)

Similar formulas may be derived for , and .

APPENDIX B
POWER ALLOCATION

The power allocation satisfying the property (50) can be ob-
tained as the solution to a different but closely related rateless
code optimization problem. Specifically, let us retain the block
structuring and layering of the code of Section VII-A, but in-
stead of using repetition and dithering in the construction, let
us consider a code where the codebooks in a given layer are
independent from block to block. While such a code is still
successively decodable, it does not retain other characteristics
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that make decoding possible with low complexity. However, the
complexity characteristic is not of interest. What does matter to
us is that the per-layer, per-block SNRs that result from a par-
ticular power allocation will be identical to those of the code of
Section VII-A for the same power allocation. Thus, in tailoring
our code in this Appendix to meet (50), we simultaneously en-
sure our code of Section VII-A will as well.

We begin by recalling a useful property of layered codes in
general that we will apply. Consider an AWGN channel with
gain and noise z of variance , and consider an -layer block
code that is successively decodable. If the constituent codes are
capacity-achieving i.i.d. Gaussian codes, and MMSE succes-
sive cancellation is used, then the overall code will be capacity
achieving. More specifically, for any choice of powers for
layers that sum to the power constraint , the
associated rates for these layers will sum to the corresponding
capacity . Equivalently, for any choice of rates

that sum to capacity, the associated powers will sum to the
corresponding power constraint. In this latter case, any rate al-
location that yield powers that are all nonnegative is a valid one.

To see this, let the relevant codebooks for the layers be
, and let the overall codeword be denoted

c c c (94)

where the c are independently selected codewords drawn
for each layer. The overall code rate is the sum of the rates of
the individual codes. The overall power of the code is

.
From the mutual information decomposition

c y (95)

where

c c c z c

with c c c c , we see that the overall code-
book power constraint can be met by apportioning power to
layers in any way desired, so long as . Since
the undecoded layers are treated as noise, the maximum code-
book rate for the th layer is then

(96)

where

(97)

is the effective SNR when decoding the th layer. Straightfor-
ward algebra, which amounts to a special-case recalculation of
(95), confirms that for any
selection of powers .

Alternatively, instead of selecting per-layer powers and com-
puting corresponding rates, one can select per-layer rates and
compute the corresponding powers. The rates for each level
may be set in any way desired so long as the total rate

does not exceed the channel capacity . The

required powers may then be found using (96) and (97) re-
cursively for . There is no need to verify the power
constraint: it follows from (95) that the powers computed in this
way sum to . Thus it remains only to check that the are
all nonnegative to ensure that the rate allocation is a valid one.

We now apply this insight to our rateless context. The target
ceiling rate for our rateless code is , and, as before,

, denotes the threshold channel gains as obtained via
(29).

Comparing (50) with (96) and (97) reveals that (50) can be
rewritten as

(98)

for all and , where

(99)

and is the mutual information in layer from block
when the realized channel gain is . Thus, meeting (50) is

equivalent to finding powers for each code block and
layer so that for the given rate allocation (a) the powers are
nonnegative, (b) the power constraint is met, and (c) when the
channel gain is , the mutual information accumulated at the
th layer after receiving code blocks equals .

Since the power constraint is automatically satisfied by any
assignment of powers that achieves the target rates, it suffices
to establish that (98) has a solution with nonnegative per-layer
powers.

The solution exists and is unique, as can be established by
induction on . Specifically, for the rateless code is
an ordinary layered code and the powers may be
computed recursively from [cf. (98)]

(100)

with as given in (49) for .
For the induction hypothesis, assume we have a power as-

signment for the first blocks that satisfies (100). To find the
power assignment for the st block, observe that when
the channel gain decreases from to the per-layer mu-
tual information of every block decreases. A nonnegative power
must be assigned to every layer in the st code block to
compensate for the shortfall.

The mutual information shortfall in the th layer is
(101)

and the power needed to make up for this shortfall is the
solution to

(102)

viz.,

(103)

This completes the induction. Perhaps counter to intuition, even
if the per-layer rates are set equal, the per-layer
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TABLE IV
PER-LAYER POWER ASSIGNMENTS � AND CHANNEL GAIN THRESHOLDS

� FOR THE INITIAL BLOCKS OF AN � � � LAYER RATELESS CODE

WITH TOTAL POWER � � ���, NOISE VARIANCE � � �, AND

PER-LAYER RATE ��� � � B/S/HZ

shortfalls will not be equal. Thus, within
a layer the effective SNR and mutual information will vary from
block to block.

Equations (101) and (103) are easily evaluated numerically.
An example is given in Table IV.10

Finally, since this result holds regardless of the choice of the
constituent , it will hold for the particular choice (99), whence
(50).

APPENDIX C
PERFECT RATELESS SOLUTION

FOR TIME-VARYING CHANNEL

As the simplest example, for the case of redundancy
blocks and layers the constraints (64) can be met, i.e., a
perfect rateless code is possible provided is not too large.

In this case, we determine our gain matrix

(104)

as a function of the ceiling rate , where the second row also
depends on the realized channel gain experienced by the first
incremental redundancy block.

As in the time-invariant case, we may without loss of gen-
erality take the first row and column to be real and nonnega-
tive. Assume, also without loss of generality, that and

. Then the first row of , which corresponds to the first
redundancy block, is computed exactly as in the time-invariant
case. In particular, from (64) with , it must satisfy

(105)

(106)

(107)

together with the power constraint

(108)

Thus, with , we have

(109)

10If one were aiming to use a rateless code of the type described in Section VII
in practice, in calculating a power allocation one should take into account the
gap to capacity of the particular base code being used. Details of this procedure
for the case of perfect rateless codes are given as part of the description of the
simulations in Section IX. For the case of near perfect codes, the corresponding
procedure is described in [28].

(110)

(111)

(112)

The derivation now departs from the time-invariant case. Re-
call that is the realized channel gain for the first block. A
second redundancy block is thus needed when . The
target gain is the solution to [cf. (63)]

(113)

which is

(114)

Using (64) for and yields

(115)

Substituting the previously computed expressions (110) and
(114) for and and solving for yields

(116)

As in the time-invariant case, to solve for the rest of the
second row of we use (64) with together with
the requirement that the first and second rows be orthogonal.
It is useful at this stage to switch to polar coordinates, i.e.,

and .
Orthogonality of the first and second rows means that

(117)

The three terms in the above expression may be viewed as the
legs of a triangle, so by the law of cosines

(118)
We now use (64) with to infer that

(119)

To expand this expression, we compute

(120)

where is the complex conjugate of the upper right entry, from
which we find

(121)

Substituting (118) into (121) and using (119) yields

(122)

(123)
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Finally, substituting the expressions for , and
computed above, using the power constraint

(124)

solving for , and simplifying terms, we arrive at

(125)

Evidently, a necessary condition for the existence of a solu-
tion for is that . It can be shown that the
sum of the powers on the first two layers is maximized when

, and then the necessary condition simplifies to

(126)

which may be shown to hold for all
bits per complex symbol.

The final step—a straightforward exercise, the details of
which we omit—is to apply the triangle inequality to (117) to
prove that the required triangle exists, and thus the phases
and .

APPENDIX D
NEAR-PERFECT RATELESS CODES FOR

TIME-VARYING CHANNELS

Our construction is a slight generalization of the cor-
responding construction in Section VII for time-invariant
channels. First, we fix , and the associated codebooks

each of rate for some to be deter-
mined. Using c and x to denote the th elements of
codeword c and redundancy block x , respectively, we again
have (38).

Power Allocation

As in the corresponding development for the time-invariant
case in Section B, a suitable power allocation for our construc-
tion is obtained as that which is optimum for a slightly dif-
ferent construction, which we now develop. In this section, dif-
ferent (independent) codebooks are used for different redun-
dancy blocks, and we take to be independent of , so that

, where is as given in (40).
The mutual information in the th layer of the th block is

then

(127)

where

(128)

is the associated per-layer SNR experienced during successive
decoding.

We now obtain the elements of recursively. We proceed
from the first block to block , where in each block

we start by determining and proceed up through . By
definition of , we have

Viewing the layering as superposition coding for a multi-access
channel, it is clear that any rate vector is achievable as long as its
sum-rate is . We may therefore obtain an equal rate per layer
by taking such that

(129)

Upon receiving knowledge of we proceed to determine the
power allocation for block . More generally, suppose the
power allocations through block have been determined
and we have now acquired channel state knowledge through

. To determine the allocation for block , we first com-
pute the mutual information shortfall in layer as

(130)

By the induction hypothesis, had the realized channel gain been
, then would be zero for all .

Now since we have , clearly the shortfall is
positive for all layers. Also, by definition of , we also have

(131)

We then solve for , in order, via

(132)

The resulting power allocation ensures that the aggregate
mutual information per layer is at least if
when i.i.d. Gaussian codebooks for all layers and blocks.
However, we wish to use the same set of codebooks for
all redundancy blocks, to keep decoding complexity low. We
return to this problem next, but in doing so will exploit this
power allocation.

Encoding

In our construction we restrict our attention to an encoding
of the form described in Section VII-A. In particular, the G
are of the form (39) with (40) and (41), with the d all
i.i.d. random variables in , and , and drawn independently
of all other random variables, including noises, messages, and
codebooks. As before, it is sufficient for d to take on only
values , and with equal probability.

Decoding

Decoding proceeds in a manner analogous to that described
in Section VII-B for the time-invariant case. In particular, since
G is drawn i.i.d., the overall channel is i.i.d., and thus we may
express the channel model in terms of an arbitrary individual el-
ement in the block. Specifically, assume that the channel gain for
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block is the minimal required , then our received
symbol can be expressed as [cf. (42)]

y

y
...

y

G

c
...

c

z
...

z

where G D, with G denoting the arbitrary element
in the sequence G , and where y is the corresponding re-
ceived symbol from redundancy block (and similarly for
c z D).

As in the time-invariant case, it is sufficient to employ suc-
cessive cancellation decoding with simple maximal ratio com-
bining (MRC) of the redundancy blocks. In this case, the effec-
tive SNR at which this th layer is decoded from blocks via
such MRC decoding is given by [cf. (48)]

(133)

with is as given in (128).

Efficiency Analysis

To show that the resulting scheme is asymptotically perfect,
we first note that when random dither encoding, MRC decoding,
and capacity-achieving base codes are used, the mutual informa-
tion satisfies [cf. (55)]

(134)

with as in (133).
Again the efficiency of the scheme depends on the choice of

power allocation matrix (40). Recall that we may further bound
for all by (56). Thus, if we choose the rate of

the base code in each layer to be (57) then (56) ensures decod-
ability after blocks are received when the channel gain sat-
isfies , as required. Moreover, the efficiency
can be made as close as desired to one by taking sufficiently
large.
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