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Abstract

We consider the ‘one-shot frame synchronization problemérg a decoder wants to locate a sync pattern
at the output of a channel on the basis of sequential obsengat\We assume that the sync pattern of lenijth
starts being emitted at a random time within some intervasiné A, that characterizes the asynchronism level
between the transmitter and the receiver. We show that aestigldecoder can optimally locate the sync pattern,
i.e., exactly, without delay, and with probability apprbag one asN — oo, if and only if the asynchronism
level grows asO(eN®), with o below the synchronization threshojda constant that admits a simple expression
depending on the channel. This constant is the same as thbatreharacterizes the limit for reliable asynchronous
communication, as was recently reported by the authors.dkceeds the synchronization threshold, any decoder,
sequential or non-sequential, locates the sync pattemamiterror that tends to one &5— oco. Hence, a sequential
decoder can locate a sync pattern as well as the (hon-ségjiiemaximum likelihood decoder that operates on the
basis of output sequences of maximum length- N — 1, but with much fewer observations.
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. INTRODUCTION

Frame synchronization refers to the problem of locatingracpattern periodically embedded into data
and received over a channel (see, elg., [4], [3], [6], [5])[4] Massey considered the situation of binary
data transmitted across a white Gaussian noise channelhéleed that, given received data of fixed
size which the sync pattern is known to belong to, the maxintiketihood rule consists of selecting the
location that maximizes the sum of the correlation and aeotion term.

We are interested in the situation where the receiver wantedate the sync pattern on the basis of
sequential observations, which Massey refers to as theshng frame synchronization problem in! [4].
Surprisingly, this setting has received much less attaritian the fixed length frame setting. In particular it
seems that this problem hasn’t been given a precise forionlgét. In this note we propose a formulation
where the decoder has to locate the sync pattern exactly @hduvdelay, with the foreknowledge that
the pattern is sent within a certain time interval that cbmazes the level of asynchronism between the
transmitter and the receiver. Our main result is the asytigptbaracterization of the largest asynchronism
level with respect to the size of the sync pattern for whicleeodler can correctly perform with arbitrarily
high probability.
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II. PROBLEM FORMULATION AND RESULT

We consider discrete-time communication over a discret@ongless channel characterized by its finite
input and output alphabefs and), respectively, transition probability matrig(y|z), for all y € Y and
x € X, and ‘noise’ symbok € x [

This work was supported in part by NSF under Grant No. CCP032, and by a University IR&D Grant from Draper Laboratory.
Throughout this note we always assume that foryal ) there is some: € X’ for which Q(y|z) > 0.
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Fig. 1. Time representation of what is sent (upper arrow) \ahdt is received (lower arrow). The' represents the ‘noise’ symbol. At
time v the sync pattern starts being sent and is detected atitime

The sync patters” consists ofV > 1 symbols fromX — possibly also the symbol. The transmission
of the sync pattern starts at a random timeiniformly distributed in1, 2, . .., A], where the integed > 1
characterizes the asynchronism level between the traresraind the receiver.

We assume that the receiver knowsbut notr. Before and after the transmission of the sync pattern,
i.e., before timer and after timev + N — 1, the receiver observes noise. Specifically, conditioned on
the value ofv, the receiver observes independent symbglss, . .. distributed as follows. I < v —1
or i > v + N, the distribution isQ(-|x). At any timei € [v,v +1,...,v + N — 1] the distribution is
Q(-|si—v+1), Wheres,, denotes theith symbol of s.

To identify the instant when the sync pattern starts beinited) the receiver uses a sequential decoder
in the form of a stopping time with respect to the output sequenkg Y5, .. B 1f 7 = n the receiver
declares that the sync pattern started being sent at timeN + 1 (see Fig[ll). The associated error
probability is defined as

P(r#v+N-1).

We now define thesynchronization threshold

Definition. An asynchronism exponent is achievableif there exists a sequence of pairs sync pat-
tern/decoder{(s", 7y)}y>1 such thats" and 7, operate under asynchronism levél = ¢V, and so
that N

Pty #v—N+1) —=30.
The synchronization threshaoldlenoteda(Q), is the supremum of the set of achievable asynchronism
exponents.

Our main result lies in the following theorem.

Theorem. The synchronization threshold as defined above is given by
a(Q) = max D(Q(:|2)|Q([)) ,

where D(Q(-|x)||Q(:|x)) is the divergence (Kullback-Leibler distance) betwégn|x) and Q(-|*). Fur-
thermore, if the asynchronism exponent is above the syndaton threshold, a maximum likelihood
decoder that is revealed the maximum length sequence ofisiz€ — 1 makes an error with a probability
that tends to one a®/ — cc.

A direct consequence of the theorem is that a sequentialdéeaan (asymptotically) locate the sync
pattern as well as the optimal maximum likelihood decodat tperates on a non-sequential basis, having
access to sequences of maximum size N — 18

Note that the synchronization threshold is the same as tkerofi/], which is defined as the largest
asynchronism level for which reliable communication canalblieved over point-to-point asynchronous

’Recall that a stopping time is an integer-valued random variable with respect to a semuef random variable§Y;}52; so that the
event{r = n}, conditioned on{Y;};-,, is independent ofY;}{2, ., for all n > 1.

3Note that if the receiver has no foreknowledge_éni.e., if A can a priori be arbitrarily large, the problem is ill-poséar any decoder,
the probability of miss-location of the sync pattern can kedenarbitrarily large ford large enough.



channels. This should not come as a surprise since the lfragymchronous communication is obtained in
the zero rate regime where decoding errors are mainly duentss location of the transmitted message.

We now prove the theorem by first presenting the direct paitthan its converse. Recall that a type,
or empirical distribution, induced by a sequencdec Z¥ is the probability” on Z whereP(a), a € Z,
is equal to the number of occurrencesaoin " divided by N.

Proof of achievability: We show that a suitable sync pattern together with the sdiglieypical-

ity decodéf achieves an asynchronism exponent arbitrarily close tosyimehronization threshold. The
intuition is as follows. Letr be a ‘maximally divergent symbol,’ i.e., so that

DQ([D)[Q([)) = a(Q) -

Suppose the sync pattern consists\ofrepetitions ofz. If we use the sequential typicality decoding we
already have almost all the properties we need. Indeedxifa (@), with negligible probability the noise
generates a block a¥ output symbols that is jointly typical with the sync patte8imilarly, the block of
output symbols generated by the sync pattern is jointlycipivith the sync pattern with high probability.
The only problem occurs when a block 8f output symbols is generated partly by noise and partly by
the sync pattern. Indeed, consider for instance the block adutput symbols from time, — 1 up to
v+ N — 2. These symbols are all generated according to the syncripagecept for the first. Hence,
whenever the decoder observes this portion of symbols, kesyan error with constant probability. The
argument extends to any fixed length shift.

The reason that the decoder is unable to locate the synarpattactly is that a constant sync pattern
has the undesirable property that when it is shifted to thketriit still looks almost the same. Therefore,
to prove the direct part of the theorem, we consider a syrteamainly composed af’s, but with a few
«'s mixed iffl to make sure that shifts of the sync pattern look sufficiedifierent from the original sync
pattern. This allows the decoder to identify the sync patactly, with no delay, and with probability
tending to one asV goes to infinity, for any asynchronism exponent less thé&f). We formalize this
below.

Suppose that, for any arbitrarily larg€, we can construct a sequence of pattefs$} of increasing
lengths such that each’ = sy, s, ..., sy satisfies the following two properties:

l. all s;'s are equal tor, except for a fraction smaller thary K that are equal te;
II. the Hamming distance between the pattern and any of ifsssbf the form

K’k .., k%, 81,82,...,SN—; ZE[1,2,,N]
%/_/
i times
is linear in N.
Now let A = eN((@-9) for somee > 0, and consider using patterns with the properties | and Il in
conjunction with the sequential typicality decodet 7.
By [1, Lemma 2.6, p.32] and property |, the probability tiéatoutput symbols entirely generated by

noise are typical with the sync pattern is upper boundedxpy(—N (1 — 1/K)(a(Q) — ¢)), wherej > 0
goes to zero as the typicality constangoes to zer.Hence, by the union bound

P{r <v}U{r>v+2N —1}) < ¢ Neo-(a=d)/K)
which tends to zero for small enough and< sufficiently Iargé?]

“The sequential typicality decoder operates as follows.isetr, it computes the empirical distributioft induced by the sync pattern
and the previousV output symbolgy,—n+1,Yn—N+2,- - -, Yn. If this distribution is close enough tB, i.e., if |P(z,y) — P(x,y)| < u for
all z,y, the decoder stops, and declares- N + 1 as the time the sync pattern started being emitted. Otherivimoves one step ahead
and repeats the procedure. Throughout the argument we agbaity is a negligible strictly positive quantity.

SIndeed, any symbol different thah can be used.

®See footnot&l4.

If a(Q) = oo the upper bound is zero ji is small enough.
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Fig. 2. Parsing of the entire received sequence of size N — 1 into r blocksy**),4(*2) ... 4" of length N, where theith block
starts at timet;.

If the N observed symbols are partly generated by noise and partthégync pattern, by property
Il, the Chernoff bound, and the union bound we obtain

P(refv,v+1,....v+N—=2]) < (N—1)e "W

which vanishes agV tends to infinity.
We then deduce that
Pr=v+N-1)—1

asN — oo.

To conclude we give an explicit construction of a sequencsyot pattern satisfying the properties |
and Il above. To that aim we use maximal length shift regiseguences (see, e.g.,[2]). Actually, for our
purpose, the only property we use from such binary sequesfcength! = 2™ — 1, m € [1,2,...), IS
that they are of Hamming distan¢é+ 1)/2 from any of their circular shifts.

To construct the sync pattern we start by setting= = for all : # 0 mod K where, without loss of
generality, K is chosen to satisfyZ | = 2™ — 1 for somem € [1,2,.. .)E With this choice, property | is
already satisfied. To specify tk@:’j positions: with i = 0 mod K, pick a maximal length shift register
sequencen, my, ..., m x|, and sets;; = 7 if m; = 0 ands;x =« if m; = 1, for any integer; < L%J.

It can be readily verified, using the circular shift propestymaximal length shift register sequences, that
this construction yields patterns that satisfy property Il
[ |
Proof of the converse:We assume thatl = ¢V with

a > max D(Q(:|2)[|Q(-*))

and show that the (optimal) maximum likelihood decoder thpérates on the basis of sequences of
maximum lengthA + N — 1 yields a probability of error going to one &g tends to infinity.

We assume that the sync patterhis composed ofV identical symbols € X. The case with multiple
symbols is obtained by a straightforward extension. Suppbe maximum likelihood decoder not only
is revealed the complete sequence

Y1, Y2, - -y YA+N-1
but also knows that the sync pattern was sent in one of titistinct block periods of duratio®V, where
r denotes the integer part ¢ + N —1)/N, as shown in Fig.12.
AssumingQ(y|x) > 0 for all y € YA straightforward algebra shows that the decoder outputsirie
ti, i €[1,2,...,7], that maximizes
Qy™

AU Gl
Qy 1)

Note that f(y*) depends only on the type of the sequente sinces" is the repetition of a single
symbol. For conciseness, from now on we adopt the notaign®) instead of@(y®|s") and @, (y™®)
instead ofQ(y"|x).

™)

Fly") =

8We use|z] to denote the largest integer smaller than
°If Q(y|x) = 0 for somey € Y we havea(Q) = oo, and there is nothing to prove.



Let Q, + ¢, denote the set of types (induced by sequencdsthat ares, > 0 close toQ, with respect
to the L; norm, and letE; denote the event that the type of thth block (corresponding to the sync
transmission period) is not i@, + ;. It follows that

P(E,) < e~ Ne 1)

for somes = e(gg) > 019 Let Qs = argMaxpe,+e f(P) where with a slight abuse of notatigiiP) is
used to denoté (") for any sequencg” having typeP. Now consider the everf, where the number
of blocks generated bg), that have typ&), is smaller than

1 No@lie)-e)
3(N + D)

Using [1, Lemma 2.6, p.32], the expected number of blocksegead by, that have type), is lower
bounded as

1
(N + 1)
> poly(N)e NP@slIQ)—a)

E (number of type), blocks generated frong,) > —ND@s1IQ4) (- — 1)

and using Chebyshev’s inequality we get
P(E,) < poly(N)e Ne-P@:lQ) @

where polyN) denotes a term that increases or decreases no faster tharompahlly in V.
Finally consider the everii; defined as the complement 81 U E,. Given thatF; happens, the decoder
sees at least ]

2(N + 1)AT°

time slots that are at least as probable as the cortlctHence, the probability of correct detection given
that the eventts happens is upper bounded as

P(corr.de¢Es) < poly(N)e Ne—P(@slQ) (3)
We deduce from[{1)[{2), an@l(3) that the probability of cotréecoding is upper bounded as

_N(D(Q_SHQ*)_O‘)

P (corr. dec) = il@(corr.de(tEi)P(Ei)

IP)_(EI) + P(E>) + P(corr.de¢Es)

<
< (6_N€ + 6_N(‘X—D(Q_s||Q*)))po|y(N) .

Therefore if

a > D(Qs]|Qy)

the probability of successful detection goes to zeroNasends to infinity. SinceD(Q,||Q,) tends to
D(Q,|Q,) asey | 0 by continuity of D(-|Q.)[M the result follows by maximizing)(Q,||Q(:|x)) over
s e X.

u

YHere we implicitly assume thaV is large enough so that the set of typ@s + <o is nonempty.
1Note thatQ. may not be equal t@)s.
2We may assumé(-||Q,) is continuous because otherwis€Q) = co and there is nothing to prove.
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