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Abstract

We consider the ‘one-shot frame synchronization problem’ where a decoder wants to locate a sync pattern
at the output of a channel on the basis of sequential observations. We assume that the sync pattern of lengthN

starts being emitted at a random time within some interval ofsize A, that characterizes the asynchronism level
between the transmitter and the receiver. We show that a sequential decoder can optimally locate the sync pattern,
i.e., exactly, without delay, and with probability approaching one asN → ∞, if and only if the asynchronism
level grows asO(eNα), with α below the synchronization threshold, a constant that admits a simple expression
depending on the channel. This constant is the same as the onethat characterizes the limit for reliable asynchronous
communication, as was recently reported by the authors. Ifα exceeds the synchronization threshold, any decoder,
sequential or non-sequential, locates the sync pattern with an error that tends to one asN → ∞. Hence, a sequential
decoder can locate a sync pattern as well as the (non-sequential) maximum likelihood decoder that operates on the
basis of output sequences of maximum lengthA + N − 1, but with much fewer observations.

Index Terms

Quickest detection, frame synchronization, sequential analysis

I. INTRODUCTION

Frame synchronization refers to the problem of locating a sync pattern periodically embedded into data
and received over a channel (see, e.g., [4], [3], [6], [5]). In [4] Massey considered the situation of binary
data transmitted across a white Gaussian noise channel. He showed that, given received data of fixed
size which the sync pattern is known to belong to, the maximumlikelihood rule consists of selecting the
location that maximizes the sum of the correlation and a correction term.

We are interested in the situation where the receiver wants to locate the sync pattern on the basis of
sequential observations, which Massey refers to as the ‘one-shot’ frame synchronization problem in [4].
Surprisingly, this setting has received much less attention than the fixed length frame setting. In particular it
seems that this problem hasn’t been given a precise formulation yet. In this note we propose a formulation
where the decoder has to locate the sync pattern exactly and without delay, with the foreknowledge that
the pattern is sent within a certain time interval that characterizes the level of asynchronism between the
transmitter and the receiver. Our main result is the asymptotic characterization of the largest asynchronism
level with respect to the size of the sync pattern for which a decoder can correctly perform with arbitrarily
high probability.

II. PROBLEM FORMULATION AND RESULT

We consider discrete-time communication over a discrete memoryless channel characterized by its finite
input and output alphabetsX andY , respectively, transition probability matrixQ(y|x), for all y ∈ Y and
x ∈ X , and ‘noise’ symbol⋆ ∈ X .1

This work was supported in part by NSF under Grant No. CCF-0515122, and by a University IR&D Grant from Draper Laboratory.
1Throughout this note we always assume that for ally ∈ Y there is somex ∈ X for which Q(y|x) > 0.
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Fig. 1. Time representation of what is sent (upper arrow) andwhat is received (lower arrow). The ‘⋆’ represents the ‘noise’ symbol. At
time ν the sync pattern starts being sent and is detected at timeτ .

The sync patternsN consists ofN ≥ 1 symbols fromX — possibly also the⋆ symbol. The transmission
of the sync pattern starts at a random timeν, uniformly distributed in[1, 2, . . . , A], where the integerA ≥ 1
characterizes the asynchronism level between the transmitter and the receiver.

We assume that the receiver knowsA but notν. Before and after the transmission of the sync pattern,
i.e., before timeν and after timeν + N − 1, the receiver observes noise. Specifically, conditioned on
the value ofν, the receiver observes independent symbolsY1, Y2, . . . distributed as follows. Ifi ≤ ν − 1
or i ≥ ν + N , the distribution isQ(·|⋆). At any time i ∈ [ν, ν + 1, . . . , ν + N − 1] the distribution is
Q(·|si−ν+1), wheresn denotes thenth symbol ofsN .

To identify the instant when the sync pattern starts being emitted, the receiver uses a sequential decoder
in the form of a stopping timeτ with respect to the output sequenceY1, Y2, . . .

2 If τ = n the receiver
declares that the sync pattern started being sent at timen − N + 1 (see Fig. 1). The associated error
probability is defined as

P(τ 6= ν + N − 1) .

We now define thesynchronization threshold.

Definition. An asynchronism exponentα is achievableif there exists a sequence of pairs sync pat-
tern/decoder{(sN , τN)}N≥1 such thatsN and τN operate under asynchronism levelA = eαN , and so
that

P(τN 6= ν − N + 1)
N→∞
−→ 0 .

The synchronization threshold, denotedα(Q), is the supremum of the set of achievable asynchronism
exponents.

Our main result lies in the following theorem.

Theorem. The synchronization threshold as defined above is given by

α(Q) = max
x

D(Q(·|x)||Q(·|⋆)) ,

whereD(Q(·|x)||Q(·|⋆)) is the divergence (Kullback-Leibler distance) betweenQ(·|x) and Q(·|⋆). Fur-
thermore, if the asynchronism exponent is above the synchronization threshold, a maximum likelihood
decoder that is revealed the maximum length sequence of sizeA+N−1 makes an error with a probability
that tends to one asN → ∞.

A direct consequence of the theorem is that a sequential decoder can (asymptotically) locate the sync
pattern as well as the optimal maximum likelihood decoder that operates on a non-sequential basis, having
access to sequences of maximum sizeA + N − 1.3

Note that the synchronization threshold is the same as the one in [7], which is defined as the largest
asynchronism level for which reliable communication can beachieved over point-to-point asynchronous

2Recall that a stopping timeτ is an integer-valued random variable with respect to a sequence of random variables{Yi}
∞

i=1 so that the
event{τ = n}, conditioned on{Yi}

n

i=1, is independent of{Yi}
∞

i=n+1 for all n ≥ 1.
3Note that if the receiver has no foreknowledge onA, i.e., if A can a priori be arbitrarily large, the problem is ill-posed:for any decoder,

the probability of miss-location of the sync pattern can be made arbitrarily large forA large enough.
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channels. This should not come as a surprise since the limit of asynchronous communication is obtained in
the zero rate regime where decoding errors are mainly due to amiss location of the transmitted message.

We now prove the theorem by first presenting the direct part and then its converse. Recall that a type,
or empirical distribution, induced by a sequencezN ∈ ZN is the probabilityP̂ on Z whereP̂ (a), a ∈ Z,
is equal to the number of occurrences ofa in zN divided byN .

Proof of achievability: We show that a suitable sync pattern together with the sequential typical-
ity decoder4 achieves an asynchronism exponent arbitrarily close to thesynchronization threshold. The
intuition is as follows. Let̄x be a ‘maximally divergent symbol,’ i.e., so that

D(Q(·|x̄)||Q(·|⋆)) = α(Q) .

Suppose the sync pattern consists ofN repetitions ofx̄. If we use the sequential typicality decoding we
already have almost all the properties we need. Indeed, ifα < α(Q), with negligible probability the noise
generates a block ofN output symbols that is jointly typical with the sync pattern. Similarly, the block of
output symbols generated by the sync pattern is jointly typical with the sync pattern with high probability.
The only problem occurs when a block ofN output symbols is generated partly by noise and partly by
the sync pattern. Indeed, consider for instance the block ofN output symbols from timeν − 1 up to
ν + N − 2. These symbols are all generated according to the sync pattern, except for the first. Hence,
whenever the decoder observes this portion of symbols, it makes an error with constant probability. The
argument extends to any fixed length shift.

The reason that the decoder is unable to locate the sync pattern exactly is that a constant sync pattern
has the undesirable property that when it is shifted to the right, it still looks almost the same. Therefore,
to prove the direct part of the theorem, we consider a sync pattern mainly composed of̄x’s, but with a few
⋆’s mixed in5 to make sure that shifts of the sync pattern look sufficientlydifferent from the original sync
pattern. This allows the decoder to identify the sync pattern exactly, with no delay, and with probability
tending to one asN goes to infinity, for any asynchronism exponent less thanα(Q). We formalize this
below.

Suppose that, for any arbitrarily largeK, we can construct a sequence of patterns{sN} of increasing
lengths such that eachsN = s1, s2, . . . , sN satisfies the following two properties:
I. all si’s are equal tōx, except for a fraction smaller than1/K that are equal to⋆;

II. the Hamming distance between the pattern and any of its shifts of the form

⋆, ⋆, . . . , ⋆
︸ ︷︷ ︸

i times

, s1, s2, . . . , sN−i i ∈ [1, 2, . . . , N ]

is linear inN .
Now let A = eN(α(Q)−ǫ), for someǫ > 0, and consider using patterns with the properties I and II in
conjunction with the sequential typicality decoderτ = τN .

By [1, Lemma 2.6, p.32] and property I, the probability thatN output symbols entirely generated by
noise are typical with the sync pattern is upper bounded byexp (−N(1 − 1/K)(α(Q) − δ)), whereδ > 0
goes to zero as the typicality constantµ goes to zero.6 Hence, by the union bound

P ({τ < ν} ∪ {τ ≥ ν + 2N − 1}) ≤ e−N(ǫ−δ−(α−δ)/K)

which tends to zero forµ small enough andK sufficiently large.7

4The sequential typicality decoder operates as follows. At time n, it computes the empirical distribution̂P induced by the sync pattern
and the previousN output symbolsyn−N+1, yn−N+2, . . . , yn. If this distribution is close enough toP , i.e., if |P̂ (x, y)−P (x, y)| ≤ µ for
all x, y, the decoder stops, and declaresn − N + 1 as the time the sync pattern started being emitted. Otherwise it moves one step ahead
and repeats the procedure. Throughout the argument we assume thatµ is a negligible strictly positive quantity.

5Indeed, any symbol different than̄x can be used.
6See footnote 4.
7If α(Q) = ∞ the upper bound is zero ifµ is small enough.
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y(t1) y(t2) . . . . . . y(tr)

Fig. 2. Parsing of the entire received sequence of sizeA + N − 1 into r blocks y(t1), y(t2), . . . , y(tr) of length N , where theith block
starts at timeti.

If the N observed symbols are partly generated by noise and partly bythe sync pattern, by property
II, the Chernoff bound, and the union bound we obtain

P (τ ∈ [ν, ν + 1, . . . , ν + N − 2]) ≤ (N − 1)e−Ω(N)

which vanishes asN tends to infinity.
We then deduce that

P(τ = ν + N − 1) → 1

asN → ∞.
To conclude we give an explicit construction of a sequence ofsync pattern satisfying the properties I

and II above. To that aim we use maximal length shift registersequences (see, e.g.,[2]). Actually, for our
purpose, the only property we use from such binary sequencesof length l = 2m − 1, m ∈ [1, 2, . . .), is
that they are of Hamming distance(l + 1)/2 from any of their circular shifts.

To construct the sync pattern we start by settingsi = x̄ for all i 6≡ 0 mod K where, without loss of
generality,K is chosen to satisfy⌊N

K
⌋ = 2m − 1 for somem ∈ [1, 2, . . .).8 With this choice, property I is

already satisfied. To specify the⌊N
K
⌋ positionsi with i ≡ 0 mod K, pick a maximal length shift register

sequencem1, m2, . . . , m⌊N

K
⌋, and setsjK = x̄ if mj = 0 andsjK = ⋆ if mj = 1, for any integerj ≤ ⌊N

K
⌋.

It can be readily verified, using the circular shift propertyof maximal length shift register sequences, that
this construction yields patterns that satisfy property II.

Proof of the converse:We assume thatA = eNα with

α > max
x

D(Q(·|x)||Q(·|⋆))

and show that the (optimal) maximum likelihood decoder thatoperates on the basis of sequences of
maximum lengthA + N − 1 yields a probability of error going to one asN tends to infinity.

We assume that the sync patternsN is composed ofN identical symbolss ∈ X . The case with multiple
symbols is obtained by a straightforward extension. Suppose the maximum likelihood decoder not only
is revealed the complete sequence

y1, y2, . . . , yA+N−1 ,

but also knows that the sync pattern was sent in one of ther distinct block periods of durationN , where
r denotes the integer part of(A + N − 1)/N , as shown in Fig. 2.

AssumingQ(y|⋆) > 0 for all y ∈ Y ,9 straightforward algebra shows that the decoder outputs thetime
ti, i ∈ [1, 2, . . . , r], that maximizes

f(y(ti)) =
Q(y(ti)|sN)

Q(y(ti)|⋆)
.

Note thatf(y(t)) depends only on the type of the sequencey(t) since sN is the repetition of a single
symbol. For conciseness, from now on we adopt the notationQs(y

(t)) instead ofQ(y(t)|sN) andQ⋆(y
(t))

instead ofQ(y(t)|⋆).

8We use⌊x⌋ to denote the largest integer smaller thanx.
9If Q(y|⋆) = 0 for somey ∈ Y we haveα(Q) = ∞, and there is nothing to prove.
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Let Qs ± ε0 denote the set of types (induced by sequencesyN ) that areε0 > 0 close toQs with respect
to the L1 norm, and letE1 denote the event that the type of theνth block (corresponding to the sync
transmission period) is not inQs ± ε0. It follows that

P(E1) ≤ e−Nǫ (1)

for someε = ε(ε0) > 0.10 Let Q̄s = arg maxP∈Qs±ǫ0 f(P ),11 where with a slight abuse of notationf(P ) is
used to denotef(yN) for any sequenceyN having typeP . Now consider the eventE2 where the number
of blocks generated byQ⋆ that have typeQ̄s is smaller than

1

2(N + 1)|X |
e−N(D(Q̄s||Q⋆)−α) .

Using [1, Lemma 2.6, p.32], the expected number of blocks generated byQ⋆ that have typeQ̄s is lower
bounded as

E
(
number of typeQ̄s blocks generated fromQ⋆

)
≥

1

(N + 1)|X |
e−ND(Q̄s||Q⋆)(r − 1)

≥ poly(N)e−N(D(Q̄s||Q⋆)−α) ,

and using Chebyshev’s inequality we get

P
(
E2

)
≤ poly(N)e−N(α−D(Q̄s ||Q⋆)) (2)

where poly(N) denotes a term that increases or decreases no faster than polynomially in N .
Finally consider the eventE3 defined as the complement ofE1∪E2. Given thatE3 happens, the decoder

sees at least
1

2(N + 1)|X |
e−N(D(Q̄s||Q⋆)−α)

time slots that are at least as probable as the correctνth. Hence, the probability of correct detection given
that the eventE3 happens is upper bounded as

P(corr.dec|E3) ≤ poly(N)e−N(α−D(Q̄s||Q⋆)) . (3)

We deduce from (1), (2), and (3) that the probability of correct decoding is upper bounded as

P (corr. dec.) =
3∑

i=1

P(corr.dec|Ei)P(Ei)

≤ P(E1) + P(E2) + P(corr.dec|E3)

≤ (e−Nε + e−N(α−D(Q̄s||Q⋆)))poly(N) .

Therefore if
α > D(Q̄s||Q⋆) ,

the probability of successful detection goes to zero asN tends to infinity. SinceD(Q̄s||Q⋆) tends to
D(Qs||Q⋆) as ε0 ↓ 0 by continuity ofD(·||Q⋆),12 the result follows by maximizingD(Qs||Q(·|⋆)) over
s ∈ X .

10Here we implicitly assume thatN is large enough so that the set of typesQs ± ε0 is nonempty.
11Note thatQ̄s may not be equal toQs.
12We may assumeD(·||Q⋆) is continuous because otherwiseα(Q) = ∞ and there is nothing to prove.
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