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Abstract

It is well known that Shannon’s rate-distortion functionOR) in the colored quadratic Gaussian
(QG) case, can be parametrized via a single Lagrangianblarithe “water level” in the reverse water
filling solution). In this work, we show that the symmetrid@ed QG multiple-description (MD) RDF
in the case of two descriptions, can be parametrized via gydngian variables. To establish this result,
we use two key ideas. First, we propose a new representatiaing MD test channel, and show that
the minimum mutual information rate across this channeh@de with the QG MD RDF. Second, we
use variational calculus to obtain a spectral domain rgmtasion of the test channel’s optimal side and
central distortion spectra given the source spectral teand the side and central distortion constraints.
The distortion spectra are specified via two Lagrangianrpatars, which control the trade-off between
the side distortion, the central distortion, and the codag. We also show that the symmetric colored
QG MD RDF can be achieved by noise-shaped predictive codittigred quantization, and memoryless
entropy coding. In particular, we show that the proposed MBX tthannel can be materialized by
embedding two source prediction loops, one for each ddgmmipwithin a common noise shaping loop
whose parameters are explicitly found from the spectrah@ia characterization. The source prediction
loops exploit the source memory, and thus reduce the codirgg The noise-shaping loop, controls the

trade-off between the side and the central distortions lapisiy the quantization noise.

This work was presented in part at the IEEE Data CompressanfeCence, Snowbird, Utah, 2008.

J. DOstergaard (janoe@ieee.org) is with the Departmentegftéinic Systems, Aalborg University, Aalborg, Denmarkeork
of J. Ostergaard is supported by the Danish Research Cdondiechnology and Production Sciences, grant no. 2743880

Y. Kochman (yuvalko@mit.edu) is with the Department of Hieal Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA.

R. Zamir (zamir@eng.tau.ac.il) is with the Department oédlical Engineering-Systems, Tel Aviv University, Tel v
Israel.

May 13, 2010 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 210 2

Index Terms

Multiple-description coding, rate-distortion theory,edictive coding, noise shaping, delta-sigma

quantization, optimization, calculus of variations.

I. INTRODUCTION

The traditional multiple-description (MD) problem [1] caiders a sourc& which is encoded
into two descriptiong; andY,, using ratesk; and R, respectively. Given either one of these
descriptions, the decoder produces a reconstructipor X, resulting in a distortionD; or D,
respectively. If both descriptions are available, the nstaiction isX yielding a distortionD,..
The achievable MD rate regioR, denotes the convex hull of the set of rate pdif&;, i)}
that allow descriptiong (Y3, Y2)}, which simultaneously yield individual distortions no gter
than D; and D,, and a joint distortion no greater thdn.. We are interested in theymmetric
situation where the two side description rates are equé#hrifbad),R = R; = R,, and the side
distortions are also equal)s = D, = D,. In this case, the MD rate-distortion function (RDF)
is defined as the minimum achievable rdtethat guarantees a distortion pair no greater than
(Ds, Dc).

The MD quadratic RDF for memoryless Gaussian sources wasdfteay Ozarow [1]. An
achievable rate region for the case of stationary Gaussiarcss was recently characterized by
Chen et al. [2]. In particular, it was shown in [2] that the i@sfable rate region forms a closed and
convex set and that the minimal description rates can bedfbyrextremizing over all distortion
spectra satisfying the individual side and central digtarconstraints. No explicit solution to
the optimal distortion spectra was found. However, somaitioh towards a spectral domain
characterization was provided. Specifically, it was shohat the optimal rates for stationary
Gaussian sources can be expressed as the sum of rates t#fl phwahnels, each one representing
a frequency band. Each of the channels must be tuned to a onmi@zarow MD rate for some
frequency dependent distortion level. In some sense, #rnde seen as a reverse “water-filling”
approach where instead of having a flat water level as in theerdional single-description case,
the water level is frequency dependent. The authors alsutgmbiout that obtaining an explicit
spectral domain solution from their results is technican-trivial. Instead it was argued that

the optimal rates can be found through numerical optinorathy approximating the source
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spectral density by piece-wise constant functions. Howeawegeneral, for arbitrarily shaped
sources, this becomes an infinite-dimensional optiminapimblem.

In this paper, we present a parametrization of the symmeticred QG MD RDF. While
Shannon’s RDF in the single description (SD) case can bergrezed by a single Lagrangian
variable [6] (usually referred to as a “water level”), we shbere that the symmetric colored
QG MD RDF can be parametrized via two Lagrangian variablEs establish this result, we use
two key ideas. First, we propose a new representation foMibeest channel (see e.g., Fig. 11),
and show that the minimum mutual information rate across ¢hannel coincides with the QG
MD RDF. Moreover, the mutual information rate is shown to lmpa to the scalar mutual
information over an AWGN channel, and the test channel caretbre be realized with white
Gaussian quantization (e.g., high dimensional latticenjgation). Second, instead of taking the
conventional approach of diagonalizing the colored Gamssource and thereby obtain an infinite
number of independent sources (which might result in an itefidimensional optimization
problem) we show that it is possible (and feasible) to diyeoptimize over the continuum
of the test channels’ side and central distortion speceakiies through the use of calculus of
variations [7]. The resulting distortion spectra are thpecsfied via two Lagrangian parameters,
which control the trade-off between the side distortioe, ¢kntral distortion, and the coding rate.
Thus, we avoid extremizing over dlinctionsrepresenting admissible distortion spectra subject
to the two distortion constraints. Instead, our resultgaéthat this otherwise intractable infinite-
dimensional optimization problem, can be cast as a two-d#o@al optimization problem over
two non-negative Lagrangian parameters subject to the shstmtion constraints.

In [3], it was shown that Ozarow’s white Gaussian MD RDF canalhieved by dithered
Delta-Sigma quantization (DSQ) and memoryless entropyngod-urthermore, by exploiting
the fact that Ozarow’s test channel becomes asymptotiogliynal for stationary sources in the
high-rate regime [4], it was shown in [3] that, at high resimn, the stationary MD RDF is
achievable by DSQ angint entropy coding. In [2] it is demonstrated how one can achawe
point on the boundary of the colored Gaussian achievabderegfionR by afrequency-domain
scheme, where the source is divided into sub-bands, andcim ®#b-band the “quantization-

splitting” scheme for white Gaussian sources presente8]ims[applied.

In our case, however, the two parameters cannot generaligtéreted as “water levels”.
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In this paper, we propose ime-domainapproach: We show that the symmetric colored
QG MD RDF can be achieved by noise-shaped predictive codimynaemorylesdithered
guantization (in the limit of high dimensional quantizatjocat all resolutions and all side-to-
central distortion ratios. We establish this result by forgna nested prediction / noise-shaping
structure containing a dithered DSQ scheme similar to [3ihi& outer loop and a predictive
coder per each description in the inner loop, see for examjge12. Each of the predictive
coders has the structure of the differential pulse-codeutatidn (DPCM) scheme, shown to be
optimal in the SD setting in [8].The role of the DSQ loop is to shape the quantization noise so
that a desired trade-off between the side distortions aac¢ntral distortion is achieved. It was
shown in [3] that the central distortion is given by the poweéithe noise that falls within the
in-band spectrum (i.e. the part of the frequency spectrunctwbverlaps the source spectrum)
whereas the side distortion is given by the power of the ceteptoise spectrum, i.e. the in-band
and the out-of-band noise spectrum. It was furthermore shihat any ratio of side-to-central
distortion can be obtained by proper shaping of the quamizanoise. We establish a similar
result here. In particular, the predictive coders take adré¢he source memory and thereby
minimize the coding rate and make sure that memoryless mntoding is optimal. Moreover,
the DSQ loop performs the noise shaping, which is requireatder to achieve any desired pair
of distortions(Dg, D¢).

This paper is organized as follows. In section IlI, we provite preliminaries. Then, in
Section Ill, we propose a test channel, which provides a megrpretation of the QG MD RDF.
We present the spectral-domain characterization of thisnaptistortion spectra in Section IV.
With the test channel in mind, we present, in Section V, an Bie4omain scheme which
encodes a source subject to a distortion mask. Then, inddewti, we extend the SD time-
domain scheme of Section V to the MD case. Conclusions areeatidh VII. Longer proofs

are deferred to Appendices A-C.

The idea of exploiting prediction in MD coding has previgubken proposed by other authors, see for example the foltpwi
related works [9]-[12]. All these works faced the basic pealn Since DPCM uses prediction from the reconstructiohemt
than from the source itself, and this prediction should heraduced at the decoder, it is not clear which of the possible
reconstructions should be used for prediction. The preserit solves this problem.
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[I. PRELIMINARIES

Let X = {X[n]}>, be a discrete-time stationary Gaussian process with pqreetrsl density
Sx = {Sx(e’)}T___. We assume that the spectrusiy obeys the Paley-Wiener conditions
[13], such that it has a positive entropy-poviex P.(Sx) < oo, where the entropy power of a
spectrumSy is defined as:

P.(Sx) £ exp (;ﬁ /7r log (Sx(ejw)> dw) 1)

—Tr

and where here and onwards all logarithms are taken to theahdtase. Using this notation, a

spectrum has a spectral decomposition:

, P.(Sx)
Sx(e) = 2
x(e") (1+AE)A+ A (2] _ ?
where
A(z) = E_ a;z”", 3)

is the optimal predictorassociated with the spectrufy.

In this work, we are interested in the symmetric case, whigre=- R, £ R and D, = D, =
Dg. The two descriptiond’ = {Y;[n]} andY; = {Y3[n]}, which are output by the encoder, are
used individually by the decoder to produag = {X;[n]} and X, = {X;[n]}, respectively. If
both descriptions are available, the decoder producesoihe rieconstructionX = {X¢[n]}.
We will use the time-averaged mean squared error (MSE) altyid=iterion. In particular,
the corresponding MSE distortions af&; £ E[d(X, X;)] = E[d(X, X5)], whered(-,) is the

time-averaged squared error, i.e.,
1 k—1 N
Ds = lim - S E[(X[n] — Xi[n])?], i=12, (4)
N L0

and D¢ £ E[d(X, X()].
We will be using entropy-constrained dithered (latticepwizers (ECDQs) for which it is
known that the additive noise model is exact at all resohgid4]. We will furthermore assume

7= e?"X) _For stationary Gaussian sources,

3For arbitrary distributed sources with finite differentiaitropyh(X), P.(Sx) £ o

h(X) = 3log(2me) + £ [log(Sx (e’*))dw from which (1) follows.
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the existence of a large numbg&r of identical and mutually independent sources (or e.g. glsin
source which is divided inté&” long blocks and jointly encoded ds parallel sources, see [8] for
details). These sources are treated independently, ekmefite actual ECDQ which processes
them jointly. Thus we will only present the scheme for onerseubut the quantization noise has
the properties of a high-dimensional ECDQ (cf. [8]). We pdavan asymptotic analysis in the
limit K — oo. In this asymptotic case, the quantization noise becompamately Gaussian
distributed (in a divergence sense) [15]. Thus, for analgsrposes, we can replace the quantizer
with a white additive noise model where the noise is appraxaty Gaussian distributed.

We will also assume that the proposed system has been aypgfati a long time, so that
possible short-time temporal transient effects can bergmhoThus, we consider the system
in steady state where it is time invariant and have well ddfinariances and power spectral

densities.

A. Additional Notation

For z real or complexy/z hasn roots. Forn = 2 and0 < x € R we define\/z = |\/z|, i.e.,
it is always non-negative. Fdr > = € R we define/z £ z’|\/H|, i.e., we take the principal
complex root. Fom = 3 andz € R we lety/z = sz’gn(x)W| denote the unique real cubic
root of x, .9.5/—8 = —2. If x € C andimag(z) # 0, we let/z denote the principal complex
root, i.e., it has a positive imaginary part. We use the mmat> to indicate theith root of the
function =. If ¢ is a function of¢, we use the notatiop|._, to indicate that the functiop is

evaluated at the poing = \.

l1l. THE QUADRATIC GAUSSIAN SYMMETRIC MD RATE REVISITED

In this section we re-state known results about the QG MDeaglhile rate in the symmetric
case, in order to gain some insight and prepare the groungHat follows. In the high resolution
limit, these results also hold for general sources withdiiifferential entropy rate [16].

For a white Gaussian source of variangg the minimum achievable symmetric side-descriptions

rate was given by Ozarow [1]:

1
Rwhite(ag(a DCa DS) S log

0'2 (0’2 — Dc)2
: X\ X ) (5)

<4D0(DS - Dc)(Ui— - Ds)
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as long as+— > 1 —-. Under high-resolution conditions, i.€s < %, the above
Do %

- 2 _
DC,maw - Dgs g

Runsein = 1 b 6
white, HR — 9 0g ( )
2,/Dc(Ds — De)

rate becomes:

as long asD¢ < De max,irr = 25

If the central decoder was to linearly combine two side dpsons of mutually independent
distortions of variancedyg, it would achieve exactly the distortio®¢ ... This motivates
the model ofnegatively correlatecside distortions (see [4]). In the high resolution limiteth
relation between the side and central distortions can biiegu by the side distortions having
a correlation matrix:

(PZDS 5 (7)
p 1

wherep = —£s520¢ < (. With this notation, (6) becomes:

1 o2 1 o2 1 1 1 o2 1
P~ i 22) = Do (28 L () & L () = o 0
! 2 o]) 2 Ds) 2 Vi—p2) 2 Ds) 2

where 5 is the high-resolution excess rate [16]. Still in the higiselution case, we take

another step: Without loss of generality, we can repredemtcbrrelated noises as the sum of
two mutually independent noises, one is added to both besnalhile the other is added to one

branch and subtracted from the other, as depicted in Fig.ole bhat the averaging eliminates

Fig. 1. A differential form of Ozarow’s double-branch te$taonel for high resolution coding.

Z_ from the central description. If we denote the variancedefrioises7, andZ_ as©, and
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O_, respectively, then we can re-write (7) as:

0.+6. ©0,-6_

o = , 9

0,-6_ ©0,+6_

where the negative correlatign< 0 implies that®_ > ©,. In terms of these variances, we can

define a spectrum:

_ ) 2®+7 ‘w| < %7
o(e’v) £ (10)
20_, § <|w|<m.

With the above definitions, we have that the entropy-powflO(e7«) is given by:

P.(6) = /|| = 2,/0,6_

and consequently the MD rate is:

_ 1 0%
R==log <Pe(é)> . (11)

The following proposition states this formally:
Proposition 1. In the scheme of Fig. 1, let3 /2 > ©_ > ©.. The distortions are given by:

DS - @++@_,

De = 0O,. (12)
In the high resolution limit, for these distortions, the imim rate(6) is given by(11).

Generalizing our view to all distortion levels, the equeral channel is depicted in Fig. 2. A
similar correlated-noises model to (7) can be obtained Ipressingp in a rather complicated
form. However, we can greatly simplify such an expressioptmper use of pre- and post-factors
as we show next. In a point-to-point scenario, it is conveinie make these factors equal [17],
[14]. However, this is generally not possible in MD codingchese the optimal post-factors
(Wiener coefficients) are different for the side and centeanstructions. We choose the pre-

factor to be equal to theide post-factor. While this choice seems arbitrary, it will yeouseful
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ag>—>Xi

ac>—Xe

ag ‘XQ

Fig. 2. Ozarow's test channel with pre and post factors.
when we turn to colored sources. Thus we have:

s = 2 )

Ox
2 2 (2
N asox _ |ox(ox -6, -0.) (13)
Qc = 53 0. 2 _ Q)2 :
agox + 04 (0% )

Proposition 2. In the scheme of Fig. 2, let3. /2 > ©_ > ©.. The distortions are given by:

DS — @++@_,
020
Do = X~ 14

For these distortions, the minimum achievable réigis given by(11).

Note that at high resolution conditiong > ©_, so (14) reduces to (12).

Proof: BetweenU and {V3, V,, V-} we have exactly the high-resolution scheme of Propo-
sition 1, i.e. we havd) = U + Zy, Vo = U + Zs, Vo = U + Z¢o, Where{Z,, Z,, Zc} are
independent of/, and whereE[Z?] = E[Z2] = ©, + ©_ andE[Z2] = O,. Since X; = agV}
and X, = acVg it is, by use of (13), straightforward to show th&t = E[(X; — X)?] and
Do = IE[(XC — X)?] are given by (14). Now substitute these distortions in (5¢gtablish (11).

[
We now turn to general (colored) stationary Gaussian ssuitcethe high resolution limit, it

was shown in [4] that the minimum rate is given by Ozarow’® @) with the source variance
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0% replaced by its entropy-powet,(Sx) (1). Recalling (11) we define:

N 1 Pe<SX)
Rcolored — 9 log ( Pe((:‘)) ; (15)

where® is given by (10).

Proposition 3. In the high resolution limit, for any_ > ©,, the minimum achievable rate for
the distortions(12) is given by(15).

For general resolution, the achievable colored Gaussianrd®region was characterized by
Chen et al. [2]. In terms of our representation for the whi#se; we can re-write the result
of [2] (for the symmetric case) in a parametric form. For givedurce spectrunix and noise

spectra®, and©_, we generalize (10) to the forfh:
20, (&%), w| < 3
O(e) = { 20_ (eﬂ(“—%>) , T<w<m, (16)
20_ (eﬂ(“*%)) , —T<w< I
With this, we define the distortion spectra (fetrr < w < 7):

Ds(e?) 2 O,(e) +0_(e) 17)

oy & _Sx(€7¥)04 (")
DC(e ) - SX(@jw) —@_(Eijw)’ (18)

reflecting the use of pre- and post-filters. Then the resu[Rpfs equivalent in the symmetric

case to the following Proposition and Corollary:

Proposition 4. For any spectra
Sx(e’)/2 > 6_(e?) > 0,(e/%) > 0, Vw,

the minimum achievable side-description rate in symme¥tiz coding of a Gaussian source

with spectrumSy with the side and central distortion spectra (17) and (18yrgen by(15).

*Notice that the lowpass and highpass spectr@®odre formed by{©, (¢’*)} and {©_(e’*)}, which are compressed
versions (by a factor of two) of the spect®a. = {©(e’“)}7__, andO_ = {6_(e’*)}]__,, respectively.
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Proof: See Appendix A. [ |

Corollary 1. The optimum symmetric MD side-description rate is givenhgyrhinimization of
(15) over all ©®,, ©_ such that the distortion spectra (17) and (18) satisfy:

1 = |
o /_ Ds(e™)dw < Ds (19)
1w |

— /_ De(e)dw < De. (20)

In the high resolution limit, the optimal specté., ©_ become flat, thu® becomes a two-
step spectrum, as in [3]. In the next section, we provide ghi@ksolution for the optimal noise
spectra®, and©_ and distortion spectr@Ds(e’“)} and{ D¢ (e7*)}.

Remark 1. If X does not satisfy the Paley-Wiener condition, ti{&b), which is based on
entropy powers, is not well defined. In this case, we may usdollowing: For anye > 0, let

Sx.(e7*) = max(Sx(e*),€),Yw, and D, = = [T max(0,e — Sx(e/*))dw. Then there exists
somee > (0 such that Proposition 4 and Corollary 1 hold withly, Ds, and D replaced by

Sx.,Ds + D., and D¢ + D,, respectively.

V. SPECTRAL DOMAIN CHARACTERIZATION OF THE TWO-DESCRIPTIONRDF

In this section we provide a spectral domain charactednatf the distortion spectra. We first
recall from Corollary 1 that finding the RDF is equivalent tadiing a pair of noise spectfa, =
{0,.(e7)}7_ _andO_ = {0_(e/*)}™___, which minimizes the description rat@ subject to
the two target distortion constrainf3s and D.. This constrained minimization problem can
also be formulated as a Lagrangian unconstrained problémchwhen provides a two-parameter
characterization of the RDF. Specifically, we consider thabjem of minimizing the functional
J where

J =R+ M\Ds + \De, (21)

_ 1 ¢ Sx(ej‘*’) . . .
and whereR = - [" log (2\/®+(ejw)®(ejw)> dw and Dg and D¢ are given by the inequality
constraints (19) and (20), respectively. The scalar weightand A\, are non-negative Lagrangian
variables, which provide a trade-off between rate, sidéodisn, and central distortion. Intu-
itively, letting A\; ~ 0, Ay =~ 0, results in a rate close to zero since this is equivalent bairsp

a minimization problem without any constraints (except thfaa non-zero rate). On the other
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hand, letting\; > 1 or A\, > 1 penalizes one of the distortions and corresponds to a high
rate situation. In particular, if; > \,, then the side distortion is severely penalized and is
therefore forced to be small. The central distortion is aleoncern in this case. N, > Ay,
then the central distortion is minimized and the side digioris of less concern. Finally, if both
A1, A2 > 1, then both the side and central distortions are small.
At this point, we define
() £ (™) + P (), (22)

which is the discriminant of a third-order polynomial, s@8®)in Appendix B, and where

1

p(e?) = —m(—&lsx(em — 16XA2Sx (e7°) + 16X X0 S% (€7%) 4+ 16255 () 2
+16S%(e’)\3 + 1)
and
o) = —%SA% (96)\1>\2S§((ej“’) ARA2S2 (7%) — 6ANESE (£4) — 96AZSE (7)),
4+ 96A35% (€79) + 96255 (e7)AT 4 24055 x (7°) + 643 5% (e7%) 4 120, Sx (€7) — 1).
(24)
With this, we letg(e?“) be given by:
arctan (%), q(e’*) > 0,
$(e’) = < 7 + arctan (%), q(e’*) < 0, (25)
/2, q(e’*) = 0.

We are now in a position to present the two-description RDB parametric form:

Theorem 1. Let X be stationary Gaussian with spectral densfty, and having finite positive
differential entropy rate, i.e.) < h(X) < oo. Then the symmetric two-description RDF,
Rx(Dg, D¢), of X at positive distortionsDs > D > 0 and under the MSE fidelity criterion
is given by:

. 1 7T Sx(6jw)
Rx(Ds, De) = 1= /_ log (2 \/@+(€jw>®_(em) dw, (26)
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—/Ip(e7%)|(cos(6(e7) /3) + V/Bsin(@(e™) /3)) + (201 + ho) + 3,1 2 < 0,

\/q 6]"') /E 6]"') \/q 6]"') E 6]“')) + 5)(3(%(2)\1 + )\2) 12)\ ,If ._‘(6%}) > 0.

(28)

where the noise spectru@®, is given by

Sx(e) — O (™) —rm<w<m

jwy _
("')-i—(e ) 4SX(ejw)()\l + )\2) _ 4)\1@_(6jUJ)7 = =/,

(27)

and where© _, for any A1, A» > 0, is given by (28) (see top of page 13). Furthermore, the pair

(A1 > 0,X > 0) of Lagrangian parameters is chosen such that the distortionstraints are

satisfied i.e.,
1 g , Sx(e7?) — O_(e/)
Do > — (eI® : . >
*=or /—W O- () + 4Sx(e79) (A1 + Ag) — 4N O_(e7)+ ), (29)
Sx(ejw)
b= 27?/ IS (00 + ) — A0 (%) ¥ (30)
Proof: See Appendix B. -

To elucidate the behavior of the noise spectra and ©, as a function ofA; and \,, we

present the following results and examples.

Proposition 5 (High-Rate Cases)or anyw € [—; 7],

, 1
Jwy —
A1 1>}2H—l>oo )\ ©- (6 ) - 4 (31)
A1 /¥ 2a—0
and
: i 1
L (A0 () = o (32)
A1/YA2—0
Proof: See Appendix C. [ |

Remark 2. The convergence requirementafi/A; — 0 in Proposition 5 is a technicality needed
in the proof. As shown in Fig. 3, the limiting behavior of (3)d (32) can also be observed
for small A\, and large ;. This shows that under high-resolution conditions, thermpim noise

spectra are flat and approximately given By (¢/*) ~ o and O, (e/Y) ~ m
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0.25
0.245
0.24
0.235
0.231
0.225)-
0.22 “‘

0.215}

— L R
— == (A +29)04 (7))

0.21 ‘

12 14 16 18 20

0205l ‘ ‘ ‘ ‘
10
A1

Fig. 3. High-rate convergence ¢A1 + X\2)O.4(e’*) and \1O_(e’¥) asA1 — oo when Sx (/) = 1, A2 = 2 and anyw.

Example 1. Let the source have a positive and monotonically decreaspagtrum given by
Sx(e’) =cos(w)+1, 0<|w| <, (33)

and shown in Fig. 4. Moreover, let the distortion constraibe Do = 0.08 and Dg = 0.4.

2 :
B R N EA Sx (e?)
1.8f 2 ---O_ (el
-~ - Dg(e?¥
1.6r ;
D¢ (e?)
1.4+
1.2r
1t
0.8
0.67---::::::1:“\\
0.4t ‘"‘:Z;\\
0.2f “~:::\:.;_"
| - ~<_~\ j
s i
0 3 3 ™

Fig. 4. SourceSx, noise©®.,O_, and distortion{ Ds(e’“)}, {Ds(e?*)} spectra ford < |w| < 7.

Using the closed-form expressions for the noise spectraigeo by Theorem 1, we have

numerically performed a simple grid search ovgr and X\;. As \; and )\, are varied, we
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compared the resulting side and central distortions givgn(29) and (30), respectively, to the
above mentioned distortion contraint% and D. The noise spectra that resulted in distortions
closest to the constraints are shown in Fig 4. The spectrawétained with\; = 0.2380, and
Ay = 2.700, which resulted inD- = 0.0801 and Dg = 0.4000. Moreover, when using these
spectra in (26) the obtained per description ratefls= 0.7468 bits/dim. In Fig. 4, we have also
shown the resulting side and central distortion spectranggi17) and (18), respectively.

To better illustrate the trade-off between central and siggtortions as a function of the source
spectrum, we have shown the ralig(©_(e’“) /O, (e’*)) as well as the ratidog(Dg(e’*)/Dc (7))
in Fig. 5. Also shown in Fig. 5, is the sum-rat&(c’~) allocated to each frequency band, where

R(e’*) denotes the per description rate spectral density, whiogivien by

R(e%) = 1 logy(Sx (¢)/(2,/6. (e5)0_(e2))). (34)

It may be noticed that zero rate is allocated for the part of $ource spectrum, which lies

below a certain threshold (as is also the case in conventi@iareverse water-filling).

251

— log(0_(e7%) /61 (7))
- - -log(Ds(e?”)/Dc(e?*)) :
“““ 2R(e’¥)
i o7 :
0 § T T

w

Fig. 5. Noise spectra ratiog(©_ (¢’“) /0 (¢’*)), and distortion spectra ratiog(Ds(e’*)/Ds(e’*)) as a function of the
source spectrum given by (33). Also shown is the sum-ratetspledensity2R(e’*) (in this latter case, the y-axis represents
bits/dim. instead of distortion ratios).

Example 2. For a givenw € [—; 7] let Sx(e?*) = 2 and let\; = 3. Then the noise spectral

density component®_(e’*) and ©, (/) are shown in Fig. 6 (expressed in dB) as a function
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of A in the rangel0; 10]. For Ay < 0.52, the discriminan€t is positive whereas fok, > 0.52, =
is negative. We have indicated the switching point withlegén the figure. Notice that already
at e.g.,\; = 4, the approximationm of (32), i.e.,—10log;,(4(A1 + A\2)) = —14.47 dB
provides a good approximation é¥. (/). Also shown in Fig. 6, ar®_(e/*) and © (¢’¥) as
a function of\; € [0;10] for fixed \, = 3 and Sx(e’*) = 2. In this case,= < 0 for all ).
Notice that at\; = 4, the approximationﬁj—1 of (31), i.e.,—10log,y(4\1) = —12.04 and (32),
i.e., —101og;o(4(A; + A2)) = —14.47, provide good approximations @ _(e/*) and ©, (e/*),
respectively. As\; — 0, ©_(e’¥) — Sx(e’*)/2, and sincel, > 0, the rate is used entirely
for reducing the central distortion. However, as increases, more rate is spend on decreasing
©_(e?*) with less emphasis 08, (¢/+).

The side and central distortionBs(e’) and D (e’*) for the above®_(e?*) and O, (/)
and givenw are shown in Fig. 7. In Fig. 8, we have illustrated (¢’*), O, (e/*), Dg(e?*),
and D¢ (e?%) as functions of\; = \,, and the corresponding description rate spectral densitie

R(e’¥), given by (34), are shown in Fig. 9.

—O0_(e@), A\ =3

b — 04 ()M =3
x ---0_(e"*), Ay =3

' -0, (e5*) A2 =3

101logy () [dB]

4 5 6
A1, A2

Fig. 6. ©_(¢’¥) and©(¢’*) as functions ofA, and as functions ofi,. The circles indicate wheE switches from being
positive to become negative, which corresponds to the ogises by (28). A single frequency bin whergx (e’“) = 2 is
considered.

V. TIME-DOMAIN SOURCE CODING SUBJECT TO ADISTORTION MASK
We take a detour to a problem that is suggested by Propogitionding of a source subject
to a maximum distortiormask D = {D(e/*)}™___, rather than subject to a total distortion

w=—m"
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oL — Ds(e7%), A1 = 3
\ — D¢ (e?¥), A1 =3
w2 ---Dg(e’*), A2 =3
\ ---Dg(e?¥), A2 =3
-4
-6 \\\

10logy(-) [dB]

1 2 3 4 5
A1, A2

Fig. 7. Dc(e’) and Ds(e’*) as functions of\; and as functions oh.. A single frequency bin wheréx (/) = 2 is
considered.

2f —O_(el¥), A1 = A2
h —O4(e?¥), A1 = A2
Oi\‘ "_DS el¥ 7)‘1 = X2

: ---Dg(e?%), M1 = Ao

10logy(-) [dB]

5
A1, A2

Fig. 8. ©_(e?*), 04 (e?), Dc(e?*), and Ds(e?*) as functions of\; = A2. A single frequency bino where Sx (e/*) = 2
is considered.

constraint. This is an SD problem, but the solution will béeexied to the MD problem in the

following section. Without loss of generaltywe assume thab(e/“) < Sx(e/*), Vw. It is easy

5Otherwise, there is just wasted allowed distortion whickslaot serve to reduce the rate.

May 13, 2010 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 210 18

N
)

NG
N

N
N

R [bits/dim.]
= P
0‘7 [ee] N

e
»
T

=
[N)
J

1 2 3 4 5
A1, A2

Fig. 9. R(e¢?¥) as a function ofA;, as a function of\2, and as a function of; = M. A single frequency bin where
Sx(e’*) = 2 is considered.

to verify, that the minimum rate for this problem is given bgdall (15)):

R(SX,D):%log f(g)) . (35)

X[n] , F2) Uln] Vin] o P2 Xl
Eln]
C(2) Az) =
A
El[n] _/\
+A

Fig. 10. A DSQ/DPCM equivalent channel for SD coding subjeca distortion mask.

Fig. 10 presents éime-domainscheme which achieves this rate. Motivated by the ratio of
entropy powers (35), we strive to achieve the optimal ratehbycombination o$ource prediction

in order to present the quantizer with a prediction error ofver P.(Sx ), and noise shaping
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in order to shape the white quantization noise of powgtD) into the spectrumD.® These
two tasks, we perform by a DPCM loop [8] and a noise-shapig IE3], respectively. In this
scheme,Z[n| is AWGN of varianceP.(D) and A(z), which is given by (3), is the optimal

predictor of the source spectruftx.” Moreover,Q(z) given by
Q) = a4 (36)
=1

is the optimal predictor for the equivalent distortion spem D, i.e., for z = /v,

2

1

joy —
D) = PAD)| g @)
= P.(D)|1+ C(&) ? (38)
from which it follows that the noise-shaping filtét(¢’“) is given by
. Jw
O(e) = Q™) (39)

TS

Note that E[n], the input to the noise-shaping filter, is equal Zon]. The pre-filter F'(¢/*)

satisfies:
: Sx(e’) — D(e’*)
F(e™)|* = : : 4
F(e) CD (40)
Theorem 2. The channel of Fig. 10 with the choices above, satisfies:
Se (€)= Sy_y(e™) = D), —-m<w<m, (42)

with the scalarmutual information/ (D[n]; Y[n]) = R(SX, D) of (35).

Proof: Since E[n| = Z[n|, we have thatV'[n] = U[n] + Z[n] * (1 + ¢[n]) so V[n] and
Uln| are connected by an additive noise channel with noise spedit. From here, using the
pre/post filter given by (40), the distortions follow immatly. Since the distortion spectra
{S¢_x(e*)} and {Sy_y(e’¥)} are equivalent and are furthermore equalpit also means
that the mutual information ratg({U[n]}; {V[n]}) = I({X[n]}; {X[n]}) equals the desired rate

®An alternative time-domain approach, is to accommodatéhfadistortion mask by changing the pre and post-filters. ¢él@y
we choose the noise-shaping approach for the sake of ertgtitis scheme to the MD setting.

"We assume that the optimal predictdfz) for the source spectrum exists. If not, then we may use theepore outlined
in Remark 1 in order to construct a predictor, which satisfiesassumption.
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(35). We will now show thatl ({U[n]}; {V[n]}) = I({B[n]};{V[n]}). To do so, we form the

following sequence of equalities:

I{Un]}:{VIn]}) = h({Va}) — h({Va}{Un}) (42)
= h({Va}) = h({Un + (1 + c[n]) * Z.}[{Us}) (43)
= h({Va}) = h({(1 + c[n]) * Z.}) (44)
= h({Va}) = h(Zy), (45)

where the last equality follows since+ C'(z) is monic and minimum phase. Similarly, using

thatV,, = B,, + Z,,, we can show that

I{ B} AV} = h({Va}) = R({Va}{B.}) (46)
= h({Va}) = h({ B + Z.}{ B }) (47)
=h({Va}) — h({Z..}) (48)
= h({Va}) — h(Zy), (49)

which equals (45). At this point we notice that the channetfi3 to IV contains a DPCM loop.
Thus, we can apply [8, Theorem 1] to show that the mutual mégion ratel ({B[n]}; {V[n]})
across the channé? «— V' is equal to the scalar mutual informatiéqD,,; D,, + Z,,) across the
inner AWGN channelD « Y. [ |

Remark 3. In the special case of a white distortion magk the constraint becomes (by
the water-filling principle) equivalent to a regular quadi@ distortion constraint. Indeed, the
channel collapses in this case to the pre/post filtered DPGMnoel of [8]. Much of the

analysis there remains valid for this problem as well. Intparar, we can construct an optimal
coding scheme using this channel, substituting the AWGNMAIJECDQ, and the scalar mutual

information I (D[n]; Y[n]) is also equal to the directed mutual informatidtD[n] — Y[n]).

VI. OPTIMAL TIME-DOMAIN COLORED MD CODING

The similarity between the rates (15) and (35) is evident.alde note, that Theorem 2 deals
with achieving the minimum rate subject to a distortion maskstraint, while Proposition 4

tells us that we must minimize the rate subjectw® distortion mask constraints.
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~ LPF —@— G*(2) —Xcin}
—@— F*(2) —Xsin]

X F(z) 4@— LPF

E[m)] -
()=

Fig. 11. A DSQ/DPCM equivalent channel for MD coding of a e¢elib source.

Fig. 11 shows the adaptation of the distortion-mask egeitathannel to the MD problefh.
Following [3], we combine upsampling by a factor of two witietnoise-shaping loop, forming
a DSQ loop.Q(z) and A(z) are the optimal predictors (2) of the spectaand S, as before.
Note that we apply an upsampled version of the source preditamelyA(z?). Since the two
side descriptions consist of the even and odd instancésxaf, this is equivalent to applying
the predictorA(z) to each description in the original source rate. The DSQ ,laopthe other
hand, works in the upsampled rate and the noise-shapingdilte) is given by (39). For a white
source,A(z) = 0 and the channel reduces to the DSQ MD scheme of [3], while ftinmal side
distortion,C'(z) = 0, and the channel reduces to an upsampled version of the DRDMadent
channel of [8].

The filters F'(¢?*) and G(e’*) play the roles of pre/post filters and satisfy.):

Sx(e/) = O, (™) — O_ ()
Sx(e3@)

Sx(6jw)
Sx(elv) —O_(elv)

P =

G(e*¥) = F(el®). (50)
Theorem 3. The channel of Fig. 11 with the choices above, satisfies:
SXc_x(ejw) = Do(e), —m<w<m,

SXS_X(ej“’) = Dg(e), —rm<w<m, (51)

8We use the index. for sequences which are “running” at the source rate, andhttex m when referring to the upsampled
rate.
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where the distortion spectra were defined in (17) and (18)|eathe scalarmutual information
I(D[m]; Y[m]) equals the rateR ,joreq Of (15).

Proof: The derivations of the distortion specf®.(e’*)} and{Dg(c’*)} proceed similarly
to the first part of the proof of Proposition 4 in Appendix A.dkhthe mutual information
rate I({B[m]}; {V[m]}) equals (15) follows from the second part of the proof of Psipo
tion 4. Finally, from the proof of Theorem 2, it follows thahe mutual information rate
I{U[m]}; {Vm]}) = I({BIm]}; {V[m]}) = I(D[m]; Y|m]), i.e., it is equal to the scalar mutual

information. [ ]

X[n] ) U
— F(2) H :  LPF —»(i— 4 \
Blm] " Ba[n] ~D2[n] o0 Ya[n] Va[n] _.O

C(z) ¢
] Packet 2 A(z)

|
(=

A

Fig. 12. Nested DSQ/DPCM MD encoder.

The encoder and decoder which materialize this equivaleanmel are presented in Fig. 12
and Fig. 13, respectively. All of the switches in the encaaled the decoder are synchroniZed.
The up sampling operation followed by lowpass filtering adinces a half-sample delay on the
odd samples. This delay is corrected at the decoder by ttey dgleratorz—! combined with
the pair of up and downsamplers, see Fig. 13. The outputseofjtiantizer block®(-) are the
reconstructed value¥;[k] and Y;[k|. Moreover, at each timé, the codeword of quantizer 1

(quantizer 2) is entropy-coded (conditioned upon the dithgnal) and put into packet 1 (packet

%It is to be understood that the switches change their paositinith the upsampled raten. Thus, in the encoder shown in
Fig. 12, the even sample3, [n] of B[m] will go on the upper branch and the odd samptgn] will go on the lower branch.
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4 o _Xlin}
Packet 1 | Packet | Yil"] _/ g I
| decoder '\i )
\—— LPF —(: > G*(2) —Xi[n]
Packet 2 | Packet ~ o
”| decoder Yaln] \ : = : o _Xz,in_u

Fig. 13. DSQ/DPCM MD decoder.

2). The packet encoding operation is reversed at the dedod®der to obtainY;[k] or Y5[k].

If each quantizer block is taken to be a high-dimensional BGiith the required rate, and the
two quantizer dither sequences are mutually independeet, these quantizers are equivalent
to the additive nois&Z[m] of the equivalent channel. Consequently, the two desoriptl;[n]
andY,[n] are equivalent to the odd and even samples, respectively,of in the equivalent
channel, and finally the whole scheme from the source to thezaleand side reconstructions is
equivalent to the channel froti[n] to X¢[n] and Xg[n], respectively.

Since we see that this scheme achieves the optimal rate Yoctamice of spectra, it will
become globally optimal when its parameters are choserrdiagoto the minimizing spectra of
Theorem 1. Thus, the encoder/decoder pair of Figs. 12 and aBle to achieve the complete
symmetric quadratic MD RDF for stationary Gaussian sougteall resolutions and for any

desired side-to-central distortion ratio.

Remark 4. In the scheme shown in Fig. 12, the two prediction loops arbeslded within a
common noise shaping loop. Alternatively, one may altemisting order and let the common
noise shaping loop be embedded within the two predictiopdoét high-resolution conditions,
there is no loss of performance by switching the nestingrofdewever, at general resolution,
the latter approach is suboptimal. The reason is, that fortevlquantization noise, the DPCM
loop also shows to the outside a total white noise (by thecbhB$ICM equality [18]), while
the DSQ loop shapes the noise. Since the DPCM loop assumts nwdige for optimality [8],

it cannot be built around the shaped DSQ noise.
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VII. CONCLUSIONS ANDDISCUSSION

A parametric formulation of the two-description symme®RDF for stationary colored Gaus-
sian sources and MSE was presented. This result was ebtblyy providing a spectral domain
characterization of the optimum side and central distoripectra. For white Gaussian sources,
the optimum distortion spectral density is a two step fuorctiFor colored sources, the optimum
distortion spectral density is generally not piece-wise blat depends upon the source spectral
density and the desired resolution (i.e., the desired akeatrd side distortion levels). It was
furthermore shown that the symmetric MD RDF could be be agtdy a time-domain approach
based on prediction and noise-shaping. The time domaineimghtation demonstrated that it
was possible to separate the mechanism responsible favitglthe source memory (DPCM)

from the mechanism controling the MD coding parameterssgishaping).

APPENDIX A

PROOF OFPROPOSITION4

We will first find the optimal pre- and post-filters as a funaotiof the noise spectr®, =
{0, (e)}"___andO_ = {6_(e/*)}"___. Given these filters, we then find the side and central
distortions (Dg, D) of the coder. We finally derive the mutual information ratethivi the
system.

Let the side post-filteZ;(¢’“) and the central post-filteF.(e’) be MMSE filters (i.e. Wiener

filters) so that

- F*(e7)Sx (')
Gs(e?”) = . - . . 52
) PP (o) + 0.() + 6 (o] 2
and . ,
Go(e%) = F*(e?*)Sx(e?*) (53)

| F(er)]2Sx (e7) + O (e7)
where F'(¢7) is the pre-filter. We match the pre-filter to the additive eoibserved at the side

decoders. Thus, we define

R -

so that we haver (/) = F*(¢?*) which leads to

[F(e™)? = |Gu(e™) ] = F()G(e™). (55)
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It is easy to see that the cross-product filtere’*) F'(e’) satisfies

Sx(e) — 04 (™) — O_(¢%)

Ge(e?)F (') = Sx(e7%) — O_(ei) (56)

and that ' . ' '

joyiz _ Ox(€7)(Sx (/) — O4(e) — O_(e))
Gl = DR o) — &7
The side distortionDg is given by
Ds = E[d(X}, X)] (58)
= E[(X (™) (F()Gi(€7) = 1)? + Go(e)(Z1(e7) + Z-(e7%)))7] (59)
7 ICTCO R CRERYE (60)
and the central distortio®. is given by

D¢ = E[d(Xc, X)] (61)
= E[(X(e/*)(F(e™)Ge(e™) = 1)* + Ge(e™) Z1(e™))?] (62)
_ L7 S0 () (63)

" 271 Jx Sx(ei¥) — O_(ei*)
At this point we recall thaty is the pre-filtered version ok, i.e., U(z) = F(z)X(z). Let
Vi=U+ Ny andV, =U + N, whereN, = Z, + Z_ and N, = — Z_ and note thatX, Ny,
and N, are mutually independent. In [16], it was shown that the sate of a stationary source

can be lower bounded by (with equality in the Gaussian case):

2R > I(Vi, Vo; U) + I(V1; Va) (64)

= h(V1) + 1(Va) — h(V1,V2|U), (65)
where fori = 1, 2,

hV;) = %log@ﬂe) + ﬁ / " log(|F(e7)2Sx (¢7) + O () + O_ (™)) dw.  (66)

In fact, h(V;) = 1log(P.(V;)). SinceVy, Va, and U are jointly Gaussian, the conditional dis-

tribution of (V4,15)|U is also Gaussian. Leby, n,(e/) = @y, 1,v(e’*) denote the resulting
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covariance matrix of the noises in a given frequency bar@ [—r; 7). It is easy to see that

| O () + O_(e) (©+(e7) + ©_(e))p(e’)
Dy, (€7) = _ , , _ ' : (67)
(©+(e) + 0_(e™))p(e™) O (™) +0_(e™)
where the correlation coefficientl < p(e/*) < 1 is given by?°

0. (e/*) —O_(e)

jwy —
) = ) T o (e) (68)
Let | - | denote the matrix determinant and notice that
[P, v, (€7)] = (O4(e7) + O (e7))*(1 — p(e’)?) (69)
=40, ()0 _(e¥). (70)

Sinceh(Vi, Va|U) = h(Ny, Ny), it follows by use of (65), (66) and (70) that the side dedwip

rate is given by

po |l /w 1Og(|F<eﬂ‘w>|2sx<ew>+@+<eﬂ‘w>+e>_<ew>) » 1)

- 2\/@+(ejw)@_(€jw)
T Jw
_ i/ log Scle) ) g (72)
dnl " 2y /0, ()0 (er)
This proves the theorem. [ |
APPENDIX B

PROOF OFTHEOREM 1

We recognize that the constrained optimization problenemiby Corollary 1 forms an
extended isoperimetric problem, which is a family of op#ation problems well known in
the literature on calculus of variations [7]. Using the clstctional (21), it is easy to show that

the Lagrangian in this case is given by:

_ 1 o Sx (&) ﬁ I I ﬁ Sx ()04 (e/)
T (2¢e+<ejw>e_<ew>) For OO o ey — 6 ()

(73)

0If one is only interested in non-positive correlations, fhllowing constraint is required®_ (e7*) > 0, (e?*) > 0, Vw.
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where); € R,i = 1, 2, are the scalar Lagrangian variables [7]. From (73) we alite following

two differential equations:

LA, X)) 11 Mo Sx(e’*)

90, () ~ 870, (%) "2 " 2w Gx(e) — B (09 (74)
and
8£(>\1, )\2) . 1 1 )\1 )\2 Sx(ejw)@+(€jw)
96 () 870 (9) 21 27 (Sx(e) — O ()2 (75)
Equating both (74) and (75) to zero and then solving for tfait solutions, yields
@—(ejw> = \1111,)\2 (ejw) (76)
and , ; .
. Sy (e?¥) — U Jw
@+(63w) _ ‘ X(e ) A1, (6 T) I (77)
45)((63“})()\1 + )\2) — 4)\1\:[’)\1’)\2 (63“))
which after elimating\, simplifies to
. . . Jjw
04 (%) = Sx(e) = W}, () + 7 — ) 79)

20 ANT ()

For a fixed pair(\;, \s) € R?, \Ifﬂhh(eﬂ'“) denotes a real (and positive) root of the third-order
polynomial
_ 4)\1)\25X(€jw> + 8)\%5X(€jw) + )\1
4N?
i 2)\15){(6jw) + 2)\25}((6jw) + 4)\1)\25§((ej“’) + 4)\%5?((6%})
473

() U2 (e)

S3(™) (M + A1)

() —
) w

(79)

Since (79) is a real third-order polynomialin¢’~), three solutions are possible (of which two
might be complex conjugates). Given a real polynomtgb’)+ay(e7) 22(e7*)+a, (') x(e?*)+

ao(e’*), where thea,(e’“)’s follows from (79), we let

, a(e’)  a3(ev
p(ejw): 1(3 )_ 2(9 )
1 ) , , )
= —m(—SMSx(eJ“) — 16X25x (e7%) + 16A1 X05% (e7) 4 16A25% (e/)  (80)
1

+ 165%(e™)A2 + 1)
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and
) = (o) () — Baofe)) — AT (51
_ —%&% (96)\1>\2S§((e”) ASAZS2 (¢7%) — GANESE (£4) — O6AZSE (),
4+ 96A35% (€79) + 96255 (e7)AT 4 24055 x (7°) + 643 5% (e7%) 4+ 120, Sx (€7) — 1).
(82)

Moreover, lets, (/%) :\3/q(ej“’) -\ /p(e7)? + g(e7*)? andsy(e*) :\3/q(ej“’) — \p(e) + qle).
Then, the three solutions are given by [19]

az(e’?)

21(e7) = (s1(€”) + s2(e’)) — 3 (83)
) = 2 (ox(e) +afe) - LD o) ey e
ry(e) = —5(51(6) + 52(e™)) - “2<§jw) _ if(sl(em — sa(e)). (85)

The discriminanE(e?) of the third-order polynomial?(e7)+aq(e’v) 22 (/%) +-ay (e/*) z(e?*)+

ap(e’*) is given by
2(e7) = ¢*(e™) + pP(e7). (86)

There are three cases to consider, depending upon the sigr’ef. If =(e’“) > 0, then there is
one real root and two complex roots.3fe’“) < 0, there are three real distinct roots. Finally, if
Z(e¥) = 0, there is a single real triple root (if(e’) = 0) or one real root and one real double
root (if ¢q(e’*) # 0) [19]. Thus, for every choice of)\, \;), one may identify the admissible
(i.e. the real and positive) solutions of (83)—(85).

A. Spectral Constraints

Recall that®, characterizes the noise spectrum of the central distodimh that the sum
spectrumO©_ + O, characterizes the noise spectrum of the side distortions;Ttve require
that0 < O, (/%) < ©_(e'¥) < Sx(e¥),0_(e/*) + O, (e’*) < Sx(e?), which further implies
that © (e?*) < Sx(e’*)/2,Yw € [—m;7]. With this, we may use (76) and (78) and form the
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inequality©, (e’*) + ©_(e’*) < Sx(e’*), which can be rewritten as

Sx(6jw)
5 .

vl (e) < (87)

Moreover, considering the other direction of the ineqyalie., © . (¢’“) + ©_(e/*) > 0, leads

to
, Sx (el¥)
i Jw X
() > s ey 1 2 (88)
It follows from (87) and (88) thalim,, o U}, (e*) = Sx(e/)/2.
B. Zeros of=
It easy to show that
— iw 54 ejw 4)\252 ejw +1 =, iw =, i =, i =, i
=(er) = - HENEEED LD 0 - () 00 - 1)) (- Fe)) - ),
(89)
where {¢Z(e/“)} are the four real roots dE(e?) given by 5 (e?@) = 0, £E(e) = =y,
o o 28x ()N 4 8% (e79) N — 1653 (67)AF — 3+ 24/2(25% (¢79)AF + 1)? 00
() =~ 48y (e79)(45% (e7)A3 + 1) - (90)
o 25x (€7) A\ 4 85% (7Y A3 — 1652 (e7)\2 — 3 — 2,/2(25% (¢/%) A2 + 1)3
(o) — 25X H S (PN —16SF(E)M — 8~ 22QSFEIM T 10 o)

4S5 (e79)(45% (e79) A3 + 1)

From the Kuhn-Tucker Theorem, it follows that the Lagrangiariables are non-negative,
i.e. A1, Ay > 0, see [20] for details. Thus, we only have to consider noratieg multipliers
and it follows thatéZ(e/~) < 0. Clearly, &(e*) < £5(e¥),Vw. Moreover, from Lemma 1
below, we notice thats(e/*) > 0,¥\;, Ay > 0, but the sign of¢5(e7*) depends upon\,. If
A\ < 1/4Sx(e?) then EE(e/v) < 0, if A\, = 1/4Sx(e’*) then &(e?*) = 0, and finally if
A1 > 1/4Sx(e?*) then&Z(e7%) > 0.

Lemma 1. For \; > 0,&5(e7%) > 0. Moreover, the sign of(e’~) (90) is given by:

= it N> oy
sign(€5 () =10 if M\ = gl (92)
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Proof: We first show thatZ(e’~) (91) is non-negative. To do so, we show that

25x (7)) A + 8S% ()N} — 165%(#)\2 — 3 — 24/2(25% ()X + 1) <0, (93)

which means that (91) is non-negative. Lgte’*) = 2Sx(e/“)\; + 85%(¢/*)\? and

o(e?*) = 2\/2(2S§((6J'W))\% + 1)% and notice that it is enough to show thate’*) < ¢(e?*), Vw.
Since ¢y (e?“) and p,(e’*) are both positive functions, we may work on their squares, i.
() = 48% (e7) NI +325% (7)1 +645% (e7“)\§ andpi(e?) = 645% (e7*)N§4+1925% (e7*) AT+
1925% (e/*)A\24-64. Forming the inequality?(e’~) > p?(e?*) and collecting similar terms yields
64 > —1885%(e7*)\? — 1605% (¢’*)A{ which is always satisfied fok, € R. This proves the
first part of the lemma.

We now consider the sign of5(e’“) (90). Let p; = 2x + 82% — 1622 — 3 and ¢, =
ZW. The discriminant ofyp, is strictly positive sop; has only a single real root,
which is located at = 1.96973 where we note tha > i Moreover,z =0 = ¢; = —3 and it
follows thaty; < 0 for z < £ andy; > 0 for x > £. Notice also thatp, > 0 for = > 0.

At this point we leth = ¢ — 3 = —256(z — £)(z + %)(z — 1)?, which is a fifth-order
polynomial having a pair of complex conjugate rootsrat +i/2 and a real (triple) root at
x = 1/4. Thus,h crosses the real line only once. Sinte= 1 for x = 0 it follows thath > 0
for z < 1/4 andh < 0 for = > 1/4. Furthermoreh = 0 for = = 1/4.

Sinceh > 0 for x < 1/4 it follows that p? > 2 which implies thaty; + p2 < 0 since
o1 < 0 for z < 1/4. The first case of (92) now follows by inserting= X\ Sx(e’*) in ¢,
and remembering the additional sign from (91). Sirice= 0 implies thaty; + o, = 0, it
immediately follows thatsign(¢5(e’“)) = 0 for z = A\ Sx(e’*) = 1/4. Finally, for h < 0 we
have p3 > ¢? which implies thatp, > ¢, sincey, is positive and it follows that (¢’*) < 0
for \;Sx(e’*) > 1/4. This proves the remaining parts of the lemma. u

We have illustrated the possible zero locations=§#’~) in Fig. 14 using the fact that

hm)\2_>:|:oo E(ej“) = —0Q, Yw.

C. Negative Discriminant

In this case=(e/v) = ¢*(¢’*) + p*(e’) < 0 and we have three real solutions. It is easy to
see that we must havge’>) < 0 and [p(e??)]? > ¢?(e7). Let 2 (/) = q(e?%) + /Z(eiv) =

q(ei?) + i /_E(ejw) and 2, (/) = q(e?¥) — \/E(e?%) = q(e?¥) — i\/—Z=(e7*) and notice that
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E(e’?)

AR

& & &

1
@ M < 5=

3

=moc

=(ev)

&, & & &

(b) A >

I S
45x (e7@)

Fig. 14. The possible zero locations for the discrimina(t’=) as a function of\, for a givenw. We note that thé*'s are
functions ofw.

si(e*) = zi(ei%),i = 1,2. SinceZ(e’¥), p(e’*) < 0, it follows that |z, (e7*)]| = |z(e?¥)| =

\/—p(ej“’)?’ = \/\p(eJ'W)P. Moreover, the phase is given by

arctan(y/—E(e?*) /q(e’)), q(e’) > 0,
¢1(e’) = {7 + arctan(y/—Z(e*) /q(e*)), q(e?*) < 0, (94)

/2, q(e’*) =0,

and ¢,(e’¥) = —¢;(e?*). Thus, ¢ (e’*) € [0;n]. The value of¢,(¢’*) depends upom(e’*),
which is a third-order real polynomial in, having a negative (or zero) discriminant. Thus, it

has three real rooté¢?(e?*)},: = 0, 1,2, which after some algebra can be shown to be given

by

Qs g\ 1 ™ ¢q(€jW) _ﬁ 1
&l(e )—W\/é\ﬁ%((e ))\%—I—lcos< 3 ) 5 +725x(6jw)’ (95)
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1

T 25y (96)

» [ ¢q(€7) Pq(€7*) A

q( jwy _ 2 w) \2 q q _ =

&) = 4SX py \/_\/25 eIINg —1—1( \/éSlIl( 3 + cos 3 5
. (97)

25){(6%})7
where

¢q(e’*) = arctan <é\/7685§(ej“’))\? + 11525% (e79) A1 + 5765% (e7) A} + 15> . (98)

Moreover,lim,, .., ¢(¢?*) = co andlimy, . ¢(e?*) = —oo. Thus,q(e?*) > 0 if Ay > &l(e?*)
or if £1(e?¥) < Ay < Ed(e7¥).
With this, it is easy to show that the solutions (rooty;(¢?“)}s_,, as given by (83)—(85),

can be written as

Jjw
1(e7) = 24/|p(ei+)| cos(¢1(e*)/3) — %, (99)

o) = —iple)]cos(on(c#)/3) + VBsin(en(e)/3)) ~ 2 (a00)
1(6) = =l coston(6)/3) — Vsinen()/3)) - 2L qaon
We note that
Cgég]2COS(C/3) > Cm[gx}—(cos((’/?)) V3sin(¢/3)) (102)
and that
gﬁ-@%ﬁ)v%mdwzﬁﬁ—@MﬁHv%MU% (103)

which implies thatr, (e’*) > z3(e’*) > z5(e?*) for any pair(\;, \2) and for allw € [—; 7).
Let us first consider the solutiom;(e’“) given by (101). From Lemma 2 below, it follows
thatz;(e’*) > Sx(e’¥)/2, which violates the spectral constraint (87). Moreovercsir; (/) >

r3(e’*), we deduce that,(e’*) given by (100) is the only admissible solution.
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Lemma 2. Let =(e/*) < 0. Then, for any positive\; and \,, x3(e’*) > Sx(e/*)/2,Vw, where
x3(e’*) is given by (101).

Proof: Since Z(e/*) < 0, we only need to considep(e’*) < 0. Thus, \/|p(e?*)| =
V(). Moreover,—gW o) \(ji (5:?2 U for some everywhere positive func-
tion c(e??). It follows that for \; > m \/M has increasing slope in,. Taking
the limit A\, — oo shows that the maximum slope W is S)g)fej On the other
hand, “2(§N > 3Sx(e’)/2 and is increasing in\, with constant sIopeSXL Moreover,
cos(¢1(e7*)/3) — V/3sin(é1(e7%)/3) < 1. Thus,x3(e?%) > —/|p(ei?)| — QQ(SN > 3Sx(e??)/2
for Ay > 1/(2Sx(e/)).

Let us now instead assume that <

W which is a high distortion situation since
from (88) it follows that having\; < 1/(2Sx(e’*)) implies thatO_(e?*) > Sx(e/*)/4,¥As. In
this case-/|p(e/*)| —az(e’*)/3 is concave im\,. Clearly,[—\/M—ag/?)]AFo > Sx(e/*)/2
and we know from above that in the limit — oo, —\/M—a2<€jw>/3 > Sx(e?¥)/2. Thus,
since we can lower bound a concave function by an affine fancii follows that—,/|p(ei)| —

az(e?°) /3 > Sx(e?*) /2. Thus,z3(e’*) > Sx(e’*)/2 as was to be proven. |

D. Positive Discriminant

In this case=(¢’“) > 0 and we have only a single real solution givenbye’) (83).

E. Zero Discriminant

In this case=(e’*) = 0, which is possible if—p3(¢’“) = ¢*(e/*). The positive zeros of
Z(e?v) are given bycF(e/v), (5 (e7%), where the former is only positive X; < =——=. Since
q(e’) # 0 when=(e/*) = 0, there are two real solutions i.e:; (e/*) and x2(63“) = xg(ejw).
We now show thatr, (/%) is the desired solution.

Let \y = £5(e7) for somew. Then it is easy to show that (e’“) = s,(e?“) < 0 and clearly
—a(e7?) /3 > Sx(el¥)/2. Thus, z5(e’) = a3(e’) = —3(s1(e7*) + s2(e*)) — as(e?*)/3 >
Sx (e’*)/2, which is not an admissible solution.

Now let A\, = £5(e/*), which is positive if and only ifd < \; < 1/(4Sx(e’)). Moreover,

assume thag(e’*) < 0 since otherwise:,(e?*) = x3(e’*) is clearly greater thax (/) /2. We
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first show thatp(e’) < 0 for \, = £5(e/*). After some algebra, we get

) 1 ) )
Jw 2/ i = : Jwy _ Jw
p(e )|)\2=§2“(61 ) 72)\% (45}((6]‘0))\% ‘I‘ 1)2 ((pl(e ) 802(6 ))7 (104)
where
P1(e) = 16v/21/(25% () A2 + 1)35% () A2 + 2v/2,/(25% (e5) A2 + 1)? (105)
and
0o (e7*) = 34 265% (7)) A2 + 104X\1S% (e7%) + 12855 (7). (106)

Since ¢ (e?*) and py(e?*) are both positive functions, we can work on their squared,farm
the inequalityp3(e?@) — p2(e), that is

03(e??) — () = 1 — 208% (e7)AT — T6A1S% (e7¥) + 150455 () A0 + 1030455 (/) A3

+ 22528\1°S7 (/%) + 16384532 (e7)\{?, (107)

which is clearly positive for alD < \; < 1/(4Sx(e)).

Let us now consider the zeros Bfe’*) = ¢*(e’*) + p3(e’*) and ¢*(e’*) from a geometric
point of view. First,q(e’*) is a third-order polynomial angf(¢?) is a non-negative sixth-order
polynomial that shares zeros witffe’’). Moreover,p(e’) < 0 as we established above and
thereforep®(e/~) < 0 for \y = £5(e?). If we consider the middle zero af (¢7%), i.e., & (e?v),
then adding the negative functigri(e’“) to ¢*(¢’*) will result in two zeros around the point
Ay = &3(e7¥) instead of a single zero ab = &1(e/*). In fact, the smaller of the zeros becomes
£5(e’v) and the larger zero becomés(e?). But then clearly&f (/) > £5(e/v) > & (e/*) and
it follows that g(e/“) < 0 for A\, = £5(e*). This shows thatr,(e?“) = x3(e’?) > Sx(e/*)/2
also for \, = £5(e7%).

The solution for=(e’*) = 0, is therefore given byt (¢7*).

F. Summarizing Solutions

In the above we have shown that there is always only a singsilple solution for any;, \,.
Specifically, if =(e?*) < 0, then the optimal solution is(e?*) (100) whereas iE(e/v) > 0,
then the optimal solution is;(¢’“) (84). In all cases, the spectral constraints in Appendix B-A

must be satisfied.
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This proves the theorem. [ ]

APPENDIX C

PROOF OFPROPOSITIONS.
A. Case); >0and Xy > 1

In this case, we note that

o )\454 ejw . )\3
It follows that=(e’~) < 0 for large \,. Furthermore,
wy _ A59%(e) A3
glei) = 222X\C7) | o(—) (109)
() = —50% ¥

q(e*)

and ¢, (e’*) = arctan ( (ejw)).

We use the solutiom,(e’) given by (84) and need to carefully address its limiting bédra
in Ao, since the dominating terms cancel. The first-order Tayppreximation ofarctan(z) is
arctan(z) = = + O(x?),V|z| < 1. Thus,

—E(em) 3V3

)\3

¢1 +4S% ()N + O ( ﬁ) . (110)

1(67) = arctan ( () 55 (@)

where the approximation becomes an equality in the limibas— oo since this implies that

¢1(e?) — 0. Similarly, for all z,

cos(z/3) +V3sin(z/3) = 1+§:)§—|—(9(x2), (cos(z/3)+V3sin(z/3))* = 1+£:)§—|—O( 2.
(111)

Let a(e’) = cos(¢1(e7%)/3) + /3sin(¢ (¢7%)/3). Then, we can write
ra(e) = —/Iefa(e) - 2 (112)

—/Ip(e)a(e) + =5
From (111) and using (110), it follows that

joy2 _ 1 JTrasi @ + o [ 2 114
Oz(6 ) =1+ W + X(6 ) + \/)\7% . ( )
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With this, we can write the numerator of (113) as

ag(ej“’)z . Sx(6jw))\2

Jw Jw\2 —
p(e) (e ) — 25 e

(QSX(EJW))\l 1 /14482 (eﬁw))\2> + O(&)

(115)
On the other hand, sindém,, .., a(e’*) = 1,Vw, the denominator of (113) can be written as

(for large \;) , .
a2(6jw) ~ 2SX(6JW))\2

_ jw Jjw ~ —
[plei)la(e™) + =5 e (116)
Substituting (115) and (116) into (113) yields
: 1 A2
O () = 11 <2SX(eJ i+ 1—/1+ 4SX(er))\2> 4O 1) (117)
1 A5
so that
. 1
Jim (") = lim_aa(e) = 1 (2SX(eJ 41— /144838 (63”))\2> (118)

B. Case);, \y > 1

We note that when assuming /A, — 0, then the results for finita, in Section C-A remain
valid. We rewrite (117) as

—(28x (7)) Ay + 1) — /1 + 4% (e7)\]

. 1 . )
O (/) = —(25 () + 1 — /1 + 452 (eﬁ“’))\z)
A\ VIS () —(28x(e#)As + 1) — /1 + 45% (e5) X3
2
Lol (119)
NeE
Jw 2
b 45x ()M +0 AL (120)
AN 1+ 485 (79) 0] + 2Sx () My + 1 A3
1 A2
Jw
4)\ C)\l(e )+O ( )\g) s (121)

wherec,, (¢/*) = O(1) andlimy, . ¢, (e’) = 1, Vw. Inserting this into (27) yields

1

@+(€jw) =
A0+ Ao) + O <

(122)

A2 1
> ()\1\/>_|_)\2\/> )\%"‘)\1)\2)-

ﬂy
>/>—‘l\')
N W
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Finally, it follows from (121) and (122) that

and

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

1
li MO_ = — 123
o im A T (123)
A1 /¥ 2a—0
im MO, (A 4+ A) = & (124)
11m = —.
A1, 2—00 1P+ 2 4
A1 /¥ xa—0
]
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