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Abstract

It is well known that Shannon’s rate-distortion function (RDF) in the colored quadratic Gaussian

(QG) case, can be parametrized via a single Lagrangian variable (the “water level” in the reverse water

filling solution). In this work, we show that the symmetric colored QG multiple-description (MD) RDF

in the case of two descriptions, can be parametrized via two Lagrangian variables. To establish this result,

we use two key ideas. First, we propose a new representation for the MD test channel, and show that

the minimum mutual information rate across this channel coincide with the QG MD RDF. Second, we

use variational calculus to obtain a spectral domain representation of the test channel’s optimal side and

central distortion spectra given the source spectral density and the side and central distortion constraints.

The distortion spectra are specified via two Lagrangian parameters, which control the trade-off between

the side distortion, the central distortion, and the codingrate. We also show that the symmetric colored

QG MD RDF can be achieved by noise-shaped predictive coding,dithered quantization, and memoryless

entropy coding. In particular, we show that the proposed MD test channel can be materialized by

embedding two source prediction loops, one for each description, within a common noise shaping loop

whose parameters are explicitly found from the spectral-domain characterization. The source prediction

loops exploit the source memory, and thus reduce the coding rate. The noise-shaping loop, controls the

trade-off between the side and the central distortions by shaping the quantization noise.
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I. INTRODUCTION

The traditional multiple-description (MD) problem [1] considers a sourceX which is encoded

into two descriptionsY1 andY2, using ratesR1 andR2, respectively. Given either one of these

descriptions, the decoder produces a reconstructionX̂1 or X̂2 resulting in a distortionD1 or D2,

respectively. If both descriptions are available, the reconstruction isX̂C yielding a distortionDC .

The achievable MD rate regionR, denotes the convex hull of the set of rate pairs{(R1, R2)}
that allow descriptions{(Y1, Y2)}, which simultaneously yield individual distortions no greater

thanD1 andD2, and a joint distortion no greater thanDC . We are interested in thesymmetric

situation where the two side description rates are equal (balanced),R = R1 = R2, and the side

distortions are also equal,DS = D1 = D2. In this case, the MD rate-distortion function (RDF)

is defined as the minimum achievable rateR that guarantees a distortion pair no greater than

(DS, DC).

The MD quadratic RDF for memoryless Gaussian sources was found by Ozarow [1]. An

achievable rate region for the case of stationary Gaussian sources was recently characterized by

Chen et al. [2]. In particular, it was shown in [2] that the achievable rate region forms a closed and

convex set and that the minimal description rates can be found by extremizing over all distortion

spectra satisfying the individual side and central distortion constraints. No explicit solution to

the optimal distortion spectra was found. However, some intuition towards a spectral domain

characterization was provided. Specifically, it was shown that the optimal rates for stationary

Gaussian sources can be expressed as the sum of rates of parallel channels, each one representing

a frequency band. Each of the channels must be tuned to a minimum Ozarow MD rate for some

frequency dependent distortion level. In some sense, this can be seen as a reverse “water-filling”

approach where instead of having a flat water level as in the conventional single-description case,

the water level is frequency dependent. The authors also pointed out that obtaining an explicit

spectral domain solution from their results is technicallynon-trivial. Instead it was argued that

the optimal rates can be found through numerical optimization by approximating the source
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spectral density by piece-wise constant functions. However, in general, for arbitrarily shaped

sources, this becomes an infinite-dimensional optimization problem.

In this paper, we present a parametrization of the symmetriccolored QG MD RDF. While

Shannon’s RDF in the single description (SD) case can be parametrized by a single Lagrangian

variable [6] (usually referred to as a “water level”), we show here that the symmetric colored

QG MD RDF can be parametrized via two Lagrangian variables.1 To establish this result, we use

two key ideas. First, we propose a new representation for theMD test channel (see e.g., Fig. 11),

and show that the minimum mutual information rate across this channel coincides with the QG

MD RDF. Moreover, the mutual information rate is shown to be equal to the scalar mutual

information over an AWGN channel, and the test channel can therefore be realized with white

Gaussian quantization (e.g., high dimensional lattice quantization). Second, instead of taking the

conventional approach of diagonalizing the colored Gaussian source and thereby obtain an infinite

number of independent sources (which might result in an infinite-dimensional optimization

problem) we show that it is possible (and feasible) to directly optimize over the continuum

of the test channels’ side and central distortion spectral densities through the use of calculus of

variations [7]. The resulting distortion spectra are then specified via two Lagrangian parameters,

which control the trade-off between the side distortion, the central distortion, and the coding rate.

Thus, we avoid extremizing over allfunctionsrepresenting admissible distortion spectra subject

to the two distortion constraints. Instead, our results reveal that this otherwise intractable infinite-

dimensional optimization problem, can be cast as a two-dimensional optimization problem over

two non-negative Lagrangian parameters subject to the samedistortion constraints.

In [3], it was shown that Ozarow’s white Gaussian MD RDF can beachieved by dithered

Delta-Sigma quantization (DSQ) and memoryless entropy coding. Furthermore, by exploiting

the fact that Ozarow’s test channel becomes asymptoticallyoptimal for stationary sources in the

high-rate regime [4], it was shown in [3] that, at high resolution, the stationary MD RDF is

achievable by DSQ andjoint entropy coding. In [2] it is demonstrated how one can achieveany

point on the boundary of the colored Gaussian achievable rate regionR by a frequency-domain

scheme, where the source is divided into sub-bands, and in each sub-band the “quantization-

splitting” scheme for white Gaussian sources presented in [5] is applied.

1In our case, however, the two parameters cannot generally beinterpreted as “water levels”.

May 13, 2010 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 2010 4

In this paper, we propose atime-domainapproach: We show that the symmetric colored

QG MD RDF can be achieved by noise-shaped predictive coding and memorylessdithered

quantization (in the limit of high dimensional quantization) at all resolutions and all side-to-

central distortion ratios. We establish this result by forming a nested prediction / noise-shaping

structure containing a dithered DSQ scheme similar to [3] inthe outer loop and a predictive

coder per each description in the inner loop, see for exampleFig. 12. Each of the predictive

coders has the structure of the differential pulse-code modulation (DPCM) scheme, shown to be

optimal in the SD setting in [8].2 The role of the DSQ loop is to shape the quantization noise so

that a desired trade-off between the side distortions and the central distortion is achieved. It was

shown in [3] that the central distortion is given by the powerof the noise that falls within the

in-band spectrum (i.e. the part of the frequency spectrum which overlaps the source spectrum)

whereas the side distortion is given by the power of the complete noise spectrum, i.e. the in-band

and the out-of-band noise spectrum. It was furthermore shown that any ratio of side-to-central

distortion can be obtained by proper shaping of the quantization noise. We establish a similar

result here. In particular, the predictive coders take careof the source memory and thereby

minimize the coding rate and make sure that memoryless entropy coding is optimal. Moreover,

the DSQ loop performs the noise shaping, which is required inorder to achieve any desired pair

of distortions(DS, DC).

This paper is organized as follows. In section II, we providethe preliminaries. Then, in

Section III, we propose a test channel, which provides a new interpretation of the QG MD RDF.

We present the spectral-domain characterization of the optimal distortion spectra in Section IV.

With the test channel in mind, we present, in Section V, an SD time-domain scheme which

encodes a source subject to a distortion mask. Then, in Section VI, we extend the SD time-

domain scheme of Section V to the MD case. Conclusions are in Section VII. Longer proofs

are deferred to Appendices A–C.

2The idea of exploiting prediction in MD coding has previously been proposed by other authors, see for example the following
related works [9]–[12]. All these works faced the basic problem: Since DPCM uses prediction from the reconstruction rather
than from the source itself, and this prediction should be reproduced at the decoder, it is not clear which of the possible
reconstructions should be used for prediction. The presentwork solves this problem.
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II. PRELIMINARIES

Let X = {X[n]}∞n=0 be a discrete-time stationary Gaussian process with power spectral density

SX = {SX(ejω)}π
ω=−π. We assume that the spectrumSX obeys the Paley-Wiener conditions

[13], such that it has a positive entropy-power0 < Pe(SX) < ∞, where the entropy power of a

spectrumSX is defined as:3

Pe(SX) , exp







1

2π

∫ π

−π
log

(

SX(ejω)
)

dω





 (1)

and where here and onwards all logarithms are taken to the natural base. Using this notation, a

spectrum has a spectral decomposition:

SX(ejω) =
Pe(SX)

(1 + A(z))(1 + A∗
(

1
z∗

)

)

∣

∣

∣

∣

∣

∣

z=ejω

, (2)

where

A(z) =
∞
∑

i=1

aiz
−i, (3)

is theoptimal predictorassociated with the spectrumSX .

In this work, we are interested in the symmetric case, whereR1 = R2 , R andD1 = D2 ,

DS. The two descriptionsY1 = {Y1[n]} andY2 = {Y2[n]}, which are output by the encoder, are

used individually by the decoder to producêX1 = {X̂1[n]} and X̂2 = {X̂2[n]}, respectively. If

both descriptions are available, the decoder produces the joint reconstructionX̂C = {X̂C [n]}.

We will use the time-averaged mean squared error (MSE) as fidelity criterion. In particular,

the corresponding MSE distortions areDS , E[d̄(X, X̂1)] = E[d̄(X, X̂2)], where d̄(·, ·) is the

time-averaged squared error, i.e.,

DS = lim
k→∞

1

k

k−1
∑

n=0

E[(X[n] − X̂i[n])2], i = 1, 2, (4)

andDC , E[d̄(X, X̂C)].

We will be using entropy-constrained dithered (lattice) quantizers (ECDQs) for which it is

known that the additive noise model is exact at all resolutions [14]. We will furthermore assume

3For arbitrary distributed sources with finite differentialentropyh(X), Pe(SX) , 1
2πe

e2h(X). For stationary Gaussian sources,
h(X) = 1

2
log(2πe) + 1

4π

∫

log(SX(ejω))dω from which (1) follows.
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the existence of a large numberK of identical and mutually independent sources (or e.g. a single

source which is divided intoK long blocks and jointly encoded asK parallel sources, see [8] for

details). These sources are treated independently, exceptfor the actual ECDQ which processes

them jointly. Thus we will only present the scheme for one source, but the quantization noise has

the properties of a high-dimensional ECDQ (cf. [8]). We provide an asymptotic analysis in the

limit K → ∞. In this asymptotic case, the quantization noise becomes approximately Gaussian

distributed (in a divergence sense) [15]. Thus, for analysis purposes, we can replace the quantizer

with a white additive noise model where the noise is approximately Gaussian distributed.

We will also assume that the proposed system has been operating for a long time, so that

possible short-time temporal transient effects can be ignored. Thus, we consider the system

in steady state where it is time invariant and have well defined variances and power spectral

densities.

A. Additional Notation

For x real or complex,n
√

x hasn roots. Forn = 2 and0 ≤ x ∈ R we define
√

x , |√x|, i.e.,

it is always non-negative. For0 > x ∈ R we define
√

x , i|
√

|x||, i.e., we take the principal

complex root. Forn = 3 and x ∈ R we let 3
√

x , sign(x)|3
√

|x|| denote the unique real cubic

root of x, e.g., 3
√
−8 = −2. If x ∈ C and imag(x) 6= 0, we let 3

√
x denote the principal complex

root, i.e., it has a positive imaginary part. We use the notation ξΞ
i to indicate theith root of the

function Ξ. If ϕ is a function ofζ , we use the notationϕ|ζ=λ to indicate that the functionϕ is

evaluated at the pointζ = λ.

III. T HE QUADRATIC GAUSSIAN SYMMETRIC MD RATE REVISITED

In this section we re-state known results about the QG MD achievable rate in the symmetric

case, in order to gain some insight and prepare the ground forwhat follows. In the high resolution

limit, these results also hold for general sources with finite differential entropy rate [16].

For a white Gaussian source of varianceσ2
X , the minimum achievable symmetric side-descriptions

rate was given by Ozarow [1]:

Rwhite(σ
2
X , DC , DS) ,

1

4
log

(

σ2
X(σ2

X − DC)2

4DC(DS − DC)(σ2
X − DS)

)

(5)
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as long as 1
DC

≥ 1
DC,max

= 2
DS

− 1
σ2

X

. Under high-resolution conditions, i.e.DS ≪ σ2
X , the above

rate becomes:

Rwhite,HR =
1

2
log





σ2
X

2
√

DC(DS − DC)



 (6)

as long asDC ≤ DC,max,HR , DS

2
.

If the central decoder was to linearly combine two side descriptions of mutually independent

distortions of variancesDS, it would achieve exactly the distortionDC,max. This motivates

the model ofnegatively correlatedside distortions (see [4]). In the high resolution limit, the

relation between the side and central distortions can be explained by the side distortions having

a correlation matrix:

Φ = DS









1 ρ

ρ 1









, (7)

whereρ = −DS−2DC

DS
≤ 0. With this notation, (6) becomes:

Rwhite,HR =
1

2
log





σ2
X

√

|Φ|



 =
1

2
log

(

σ2
X

DS

)

+
1

2
log

(

1√
1 − ρ2

)

,
1

2
log

(

σ2
X

DS

)

+
1

2
δHR, (8)

where δHR is the high-resolution excess rate [16]. Still in the high-resolution case, we take

another step: Without loss of generality, we can represent the correlated noises as the sum of

two mutually independent noises, one is added to both branches while the other is added to one

branch and subtracted from the other, as depicted in Fig. 1. Note that the averaging eliminates

X

X̂1

X̂2

X̂c

Z++Z−

Z+−Z−

1
2

1
2

Fig. 1. A differential form of Ozarow’s double-branch test channel for high resolution coding.

Z− from the central description. If we denote the variances of the noisesZ+ andZ− asΘ+ and
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Θ−, respectively, then we can re-write (7) as:

Φ =









Θ+ + Θ− Θ+ − Θ−

Θ+ − Θ− Θ+ + Θ−









, (9)

where the negative correlationρ < 0 implies thatΘ− ≥ Θ+. In terms of these variances, we can

define a spectrum:

Θ̃(ejω) ,















2Θ+, |ω| < π
2
,

2Θ−, π
2
≤ |ω| < π.

(10)

With the above definitions, we have that the entropy-power (1) of Θ̃(ejω) is given by:

Pe(Θ̃) =
√

|Φ| = 2
√

Θ+Θ−

and consequently the MD rate is:

R =
1

2
log

(

σ2
X

Pe(Θ̃)

)

. (11)

The following proposition states this formally:

Proposition 1. In the scheme of Fig. 1, letσ2
X/2 ≥ Θ− ≥ Θ+. The distortions are given by:

DS = Θ+ + Θ−,

DC = Θ+. (12)

In the high resolution limit, for these distortions, the minimum rate(6) is given by(11).

Generalizing our view to all distortion levels, the equivalent channel is depicted in Fig. 2. A

similar correlated-noises model to (7) can be obtained by expressingρ in a rather complicated

form. However, we can greatly simplify such an expression byproper use of pre- and post-factors

as we show next. In a point-to-point scenario, it is convenient to make these factors equal [17],

[14]. However, this is generally not possible in MD coding because the optimal post-factors

(Wiener coefficients) are different for the side and centralreconstructions. We choose the pre-

factor to be equal to thesidepost-factor. While this choice seems arbitrary, it will prove useful
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X

X̂1

X̂2

X̂c

Z++Z−

Z+−Z−

1
2

1
2

αS

αS

αS αC

V1

V2

VCU

Fig. 2. Ozarow’s test channel with pre and post factors.

when we turn to colored sources. Thus we have:

αS ,

√

√

√

√

σ2
X − Θ+ − Θ−

σ2
X

,

αC ,
αSσ2

X

α2
Sσ2

X + Θ+

=

√

√

√

√

σ2
X(σ2

X − Θ+ − Θ−)

(σ2
X − Θ−)2

. (13)

Proposition 2. In the scheme of Fig. 2, letσ2
X/2 ≥ Θ− ≥ Θ+. The distortions are given by:

DS = Θ+ + Θ−,

DC =
σ2

XΘ+

σ2
X − Θ−

. (14)

For these distortions, the minimum achievable rate(5) is given by(11).

Note that at high resolution conditionsσ2
x ≫ Θ−, so (14) reduces to (12).

Proof: BetweenU and{V1, V2, VC} we have exactly the high-resolution scheme of Propo-

sition 1, i.e. we haveV1 = U + Z1, V2 = U + Z2, VC = U + ZC , where{Z1, Z2, ZC} are

independent ofU , and whereE[Z2
1 ] = E[Z2

2 ] = Θ+ + Θ− and E[Z2
C ] = Θ+. SinceX̂i = αSVi

and X̂c = αCVC it is, by use of (13), straightforward to show thatDS = E[(X̂i − X)2] and

DC = E[(X̂C −X)2] are given by (14). Now substitute these distortions in (5) toestablish (11).

We now turn to general (colored) stationary Gaussian sources. In the high resolution limit, it

was shown in [4] that the minimum rate is given by Ozarow’s rate (5) with the source variance
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σ2
X replaced by its entropy-powerPe(SX) (1). Recalling (11) we define:

Rcolored ,
1

2
log

(

Pe(SX)

Pe(Θ̃)

)

, (15)

whereΘ̃ is given by (10).

Proposition 3. In the high resolution limit, for anyΘ− ≥ Θ+, the minimum achievable rate for

the distortions.(12) is given by(15).

For general resolution, the achievable colored Gaussian MDrate region was characterized by

Chen et al. [2]. In terms of our representation for the white case, we can re-write the result

of [2] (for the symmetric case) in a parametric form. For given source spectrumSX and noise

spectraΘ+ andΘ−, we generalize (10) to the form:4

Θ̃(ejω) =































2Θ+ (ej2ω) , |ω| < π
2
,

2Θ−

(

ej2(ω−π
2 )
)

, π
2

< ω ≤ π,

2Θ−

(

ej2(ω+ π
2 )
)

, −π ≤ ω < −π
2
.

(16)

With this, we define the distortion spectra (for−π ≤ ω ≤ π):

DS(ejω) , Θ+(ejω) + Θ−(ejω) (17)

DC(ejω) ,
SX(ejω)Θ+(ejω)

SX(ejω) − Θ−(ejω)
, (18)

reflecting the use of pre- and post-filters. Then the result of[2] is equivalent in the symmetric

case to the following Proposition and Corollary:

Proposition 4. For any spectra

SX(ejω)/2 ≥ Θ−(ejω) ≥ Θ+(ejω) > 0, ∀ω,

the minimum achievable side-description rate in symmetricMD coding of a Gaussian source

with spectrumSX with the side and central distortion spectra (17) and (18) isgiven by(15).

4Notice that the lowpass and highpass spectra ofΘ̃ are formed by{Θ+(ej2ω)} and {Θ−(ej2ω)}, which are compressed
versions (by a factor of two) of the spectraΘ+ = {Θ+(ejω)}π

ω=−π andΘ− = {Θ−(ejω)}π
ω=−π, respectively.
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Proof: See Appendix A.

Corollary 1. The optimum symmetric MD side-description rate is given by the minimization of

(15) over all Θ+, Θ− such that the distortion spectra (17) and (18) satisfy:

1

2π

∫ π

−π
DS(ejω) dω ≤ DS (19)

1

2π

∫ π

−π
DC(ejω) dω ≤ DC . (20)

In the high resolution limit, the optimal spectraΘ+, Θ− become flat, thus̃Θ becomes a two-

step spectrum, as in [3]. In the next section, we provide an explicit solution for the optimal noise

spectraΘ+ andΘ− and distortion spectra{DS(ejω)} and{DC(ejω)}.

Remark 1. If X does not satisfy the Paley-Wiener condition, then(15), which is based on

entropy powers, is not well defined. In this case, we may use the following: For anyǫ > 0, let

SXǫ
(ejω) = max(SX(ejω), ǫ), ∀ω, and Dǫ = 1

2π

∫ π
−π max(0, ǫ − SX(ejω))dω. Then there exists

someǫ > 0 such that Proposition 4 and Corollary 1 hold withSX , DS, and DC replaced by

SXǫ
, DS + Dǫ, and DC + Dǫ, respectively.

IV. SPECTRAL DOMAIN CHARACTERIZATION OF THE TWO-DESCRIPTIONRDF

In this section we provide a spectral domain characterization of the distortion spectra. We first

recall from Corollary 1 that finding the RDF is equivalent to finding a pair of noise spectraΘ+ =

{Θ+(ejω)}π
ω=−π andΘ− = {Θ−(ejω)}π

ω=−π, which minimizes the description rateR subject to

the two target distortion constraintsDS and DC . This constrained minimization problem can

also be formulated as a Lagrangian unconstrained problem, which then provides a two-parameter

characterization of the RDF. Specifically, we consider the problem of minimizing the functional

J where

J = R + λ1DS + λ2DC , (21)

and whereR = 1
4π

∫ π
−π log

(

SX(ejω)

2
√

Θ+(ejω)Θ−(ejω)

)

dω and DS and DC are given by the inequality

constraints (19) and (20), respectively. The scalar weightsλ1 andλ2 are non-negative Lagrangian

variables, which provide a trade-off between rate, side distortion, and central distortion. Intu-

itively, letting λ1 ≈ 0, λ2 ≈ 0, results in a rate close to zero since this is equivalent to solving

a minimization problem without any constraints (except that of a non-zero rate). On the other
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hand, lettingλ1 ≫ 1 or λ2 ≫ 1 penalizes one of the distortions and corresponds to a high

rate situation. In particular, ifλ1 ≫ λ2, then the side distortion is severely penalized and is

therefore forced to be small. The central distortion is of less concern in this case. Ifλ2 ≫ λ1,

then the central distortion is minimized and the side distortion is of less concern. Finally, if both

λ1, λ2 ≫ 1, then both the side and central distortions are small.

At this point, we define

Ξ(ejω) , q2(ejω) + p3(ejω), (22)

which is the discriminant of a third-order polynomial, see (79) in Appendix B, and where

p(ejω) = − 1

144λ2
1

(−8λ1SX(ejω) − 16λ2SX(ejω) + 16λ1λ2S
2
X(ejω) + 16λ2

1S
2
X(ejω)

+ 16S2
X(ejω)λ2

2 + 1)

(23)

and

q(ejω) = − 1

1728λ3
1

(

96λ1λ2S
2
X(ejω) − 48λ2

1S
2
X(ejω) − 64λ3

2S
3
X(ejω) − 96λ2

2S
3
X(ejω)λ1

+ 96λ2
2S

2
X(ejω) + 96λ2S

3
X(ejω)λ2

1 + 24λ2SX(ejω) + 64λ3
1S

3
X(ejω) + 12λ1SX(ejω) − 1

)

.

(24)

With this, we letφ(ejω) be given by:

φ(ejω) =







































arctan
(√

−Ξ(ejω)

q(ejω)

)

, q(ejω) > 0,

π + arctan
(
√

−Ξ(ejω)

q(ejω)

)

, q(ejω) < 0,

π/2, q(ejω) = 0.

(25)

We are now in a position to present the two-description RDF ina parametric form:

Theorem 1. Let X be stationary Gaussian with spectral densitySX , and having finite positive

differential entropy rate, i.e.,0 < h̄(X) < ∞. Then the symmetric two-description RDF,

RX(DS, DC), of X at positive distortionsDS > DC > 0 and under the MSE fidelity criterion

is given by:

RX(DS, DC) =
1

4π

∫ π

−π
log





SX(ejω)

2
√

Θ+(ejω)Θ−(ejω)



 dω, (26)
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Θ−(ejω) =















−
√

|p(ejω)|(cos(φ(ejω)/3) +
√

3 sin(φ(ejω)/3)) + SX(ejω)
3λ1

(2λ1 + λ2) + 1
12λ1

, if Ξ < 0,

3

√

q(ejω)+
√

Ξ(ejω) − 3

√

q(ejω)−
√

Ξ(ejω) + SX(ejω)
3λ1

(2λ1 + λ2) + 1
12λ1

, if Ξ(ejω) ≥ 0.

(28)

where the noise spectrumΘ+ is given by

Θ+(ejω)=
SX(ejω) − Θ−(ejω)

4SX(ejω)(λ1 + λ2) − 4λ1Θ−(ejω)
, −π ≤ ω ≤ π, (27)

and whereΘ−, for anyλ1, λ2 > 0, is given by (28) (see top of page 13). Furthermore, the pair

(λ1 > 0, λ2 > 0) of Lagrangian parameters is chosen such that the distortionconstraints are

satisfied i.e.,

DS ≥ 1

2π

∫ π

−π
Θ−(ejω) +

SX(ejω) − Θ−(ejω)

4SX(ejω)(λ1 + λ2) − 4λ1Θ−(ejω)+
dω, (29)

DC ≥ 1

2π

∫ π

−π

SX(ejω)

4SX(ejω)(λ1 + λ2) − 4λ1Θ−(ejω)
dω. (30)

Proof: See Appendix B.

To elucidate the behavior of the noise spectraΘ− and Θ+ as a function ofλ1 and λ2, we

present the following results and examples.

Proposition 5 (High-Rate Cases). For any ω ∈ [−π; π],

lim
λ1,λ2→∞
λ1/3√λ2→0

λ1Θ−(ejω) =
1

4
(31)

and

lim
λ1,λ2→∞
λ1/3√λ2→0

(λ1 + λ2)Θ+(ejω) =
1

4
. (32)

Proof: See Appendix C.

Remark 2. The convergence requirement ofλ1/
3
√

λ2 → 0 in Proposition 5 is a technicality needed

in the proof. As shown in Fig. 3, the limiting behavior of (31)and (32) can also be observed

for small λ2 and largeλ1. This shows that under high-resolution conditions, the optimum noise

spectra are flat and approximately given byΘ−(ejω) ≈ 1
4λ1

and Θ+(ejω) ≈ 1
4(λ1+λ2)

.

May 13, 2010 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 2010 14

2 4 6 8 10 12 14 16 18 20
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

 

 

λ1

(λ1+λ2)Θ+(ejω)
λ1Θ

−
(ejω)

Fig. 3. High-rate convergence of(λ1 + λ2)Θ+(ejω) andλ1Θ−(ejω) asλ1 → ∞ whenSX(ejω) = 1, λ2 = 2 and anyω.

Example 1. Let the source have a positive and monotonically decreasingspectrum given by

SX(ejω) = cos(ω) + 1, 0 ≤ |ω| < π, (33)

and shown in Fig. 4. Moreover, let the distortion constraints beDC = 0.08 and DS = 0.4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

ω

SX(ejω)
Θ−(ejω)
Θ+(ejω)

DC(ejω)
DS(ejω)

π
3

2π
3

π

Fig. 4. SourceSX , noiseΘ+, Θ−, and distortion{DS(ejω)}, {DS(ejω)} spectra for0 ≤ |ω| < π.

Using the closed-form expressions for the noise spectra provided by Theorem 1, we have

numerically performed a simple grid search overλ1 and λ2. As λ1 and λ2 are varied, we
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compared the resulting side and central distortions given by (29) and (30), respectively, to the

above mentioned distortion contraintsDS andDC . The noise spectra that resulted in distortions

closest to the constraints are shown in Fig 4. The spectra were obtained withλ1 = 0.2380, and

λ2 = 2.700, which resulted inDC = 0.0801 and DS = 0.4000. Moreover, when using these

spectra in (26) the obtained per description rate isR = 0.7468 bits/dim. In Fig. 4, we have also

shown the resulting side and central distortion spectra using (17) and (18), respectively.

To better illustrate the trade-off between central and sidedistortions as a function of the source

spectrum, we have shown the ratiolog(Θ−(ejω)/Θ+(ejω)) as well as the ratiolog(DS(ejω)/DC(ejω))

in Fig. 5. Also shown in Fig. 5, is the sum-rate2R(ejω) allocated to each frequency band, where

R(ejω) denotes the per description rate spectral density, which isgiven by

R(ejω) =
1

2
log2(SX(ejω)/(2

√

Θ+(ejω)Θ−(ejω))). (34)

It may be noticed that zero rate is allocated for the part of the source spectrum, which lies

below a certain threshold (as is also the case in conventional SD reverse water-filling).

0

0.5

1

1.5

2

2.5

 

 

log(Θ−(ejω)/Θ+(ejω))
log(DS(ejω)/DC(ejω))
2R(ejω)

π
3

2π
3

π
ω

Fig. 5. Noise spectra ratiolog(Θ−(ejω)/Θ+(ejω)), and distortion spectra ratiolog(DS(ejω)/DS(ejω)) as a function of the
source spectrum given by (33). Also shown is the sum-rate spectral density2R(ejω) (in this latter case, the y-axis represents
bits/dim. instead of distortion ratios).

Example 2. For a givenω ∈ [−π; π] let SX(ejω) = 2 and letλ1 = 3. Then the noise spectral

density componentsΘ−(ejω) and Θ+(ejω) are shown in Fig. 6 (expressed in dB) as a function
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of λ2 in the range[0; 10]. For λ2 < 0.52, the discriminantΞ is positive whereas forλ2 > 0.52, Ξ

is negative. We have indicated the switching point with circles in the figure. Notice that already

at e.g.,λ2 = 4, the approximation 1
4(λ1+λ2)

of (32), i.e.,−10 log10(4(λ1 + λ2)) = −14.47 dB

provides a good approximation ofΘ+(ejω). Also shown in Fig. 6, areΘ−(ejω) and Θ+(ejω) as

a function ofλ1 ∈ [0; 10] for fixed λ2 = 3 and SX(ejω) = 2. In this case,Ξ < 0 for all λ1.

Notice that atλ1 = 4, the approximation 1
4λ1

of (31), i.e.,−10 log10(4λ1) = −12.04 and (32),

i.e., −10 log10(4(λ1 + λ2)) = −14.47, provide good approximations ofΘ−(ejω) and Θ+(ejω),

respectively. Asλ1 → 0, Θ−(ejω) → SX(ejω)/2, and sinceλ2 > 0, the rate is used entirely

for reducing the central distortion. However, asλ1 increases, more rate is spend on decreasing

Θ−(ejω) with less emphasis onΘ+(ejω).

The side and central distortionsDS(ejω) and DC(ejω) for the aboveΘ−(ejω) and Θ+(ejω)

and givenω are shown in Fig. 7. In Fig. 8, we have illustratedΘ−(ejω), Θ+(ejω), DS(ejω),

and DC(ejω) as functions ofλ1 = λ2, and the corresponding description rate spectral densities

R(ejω), given by (34), are shown in Fig. 9.

1 2 3 4 5 6 7 8 9

−16

−14

−12

−10

−8

−6

−4

−2

 

 

Θ−(ejω), λ2 = 3

Θ−(ejω), λ1 = 3

Θ+(ejω), λ2 = 3

Θ+(ejω), λ1 = 3

λ1, λ2

1
0
lo

g
1
0
(·
)

[d
B

]

Fig. 6. Θ−(ejω) andΘ+(ejω) as functions ofλ1 and as functions ofλ2. The circles indicate whenΞ switches from being
positive to become negative, which corresponds to the casesgiven by (28). A single frequency bin whereSX(ejω) = 2 is
considered.

V. T IME-DOMAIN SOURCE CODING SUBJECT TO ADISTORTION MASK

We take a detour to a problem that is suggested by Proposition4; coding of a source subject

to a maximum distortionmaskD = {D(ejω)}π
ω=−π, rather than subject to a total distortion
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Fig. 7. DC(ejω) and DS(ejω) as functions ofλ1 and as functions ofλ2. A single frequency bin whereSX(ejω) = 2 is
considered.
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(·
)
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]

Fig. 8. Θ−(ejω), Θ+(ejω), DC(ejω), andDS(ejω) as functions ofλ1 = λ2. A single frequency binω whereSX(ejω) = 2
is considered.

constraint. This is an SD problem, but the solution will be extended to the MD problem in the

following section. Without loss of generality5, we assume thatD(ejω) ≤ SX(ejω), ∀ω. It is easy

5Otherwise, there is just wasted allowed distortion which does not serve to reduce the rate.
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Fig. 9. R(ejω) as a function ofλ1, as a function ofλ2, and as a function ofλ1 = λ2. A single frequency bin where
SX(ejω) = 2 is considered.

to verify, that the minimum rate for this problem is given by (recall (15)):

R
(

SX , D
)

=
1

2
log









Pe(SX)

Pe

(

D
)









. (35)

−

−

X[n] U [n] B[n] D[n] Y [n] V [n]

Z[n]

E[n]

Ẽ[n]

X̂[n]
F (z)

A(z)

F ∗(z)

C(z)

Fig. 10. A DSQ/DPCM equivalent channel for SD coding subjectto a distortion mask.

Fig. 10 presents atime-domainscheme which achieves this rate. Motivated by the ratio of

entropy powers (35), we strive to achieve the optimal rate bythe combination ofsource prediction

in order to present the quantizer with a prediction error of power Pe(SX), and noise shaping
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in order to shape the white quantization noise of powerPe(D) into the spectrumD.6 These

two tasks, we perform by a DPCM loop [8] and a noise-shaping loop [3], respectively. In this

scheme,Z[n] is AWGN of variancePe(D) and A(z), which is given by (3), is the optimal

predictor of the source spectrumSX .7 Moreover,Q(z) given by

Q(z) =
∞
∑

i=1

qiz
i, (36)

is the optimal predictor for the equivalent distortion spectrum D, i.e., for z = ejω,

D(ejω) = Pe(D)

∣

∣

∣

∣

∣

1

1 + Q(ejω)

∣

∣

∣

∣

∣

2

(37)

= Pe(D)
∣

∣

∣1 + C(ejω)
∣

∣

∣

2
, (38)

from which it follows that the noise-shaping filterC(ejω) is given by

C(ejω) = − Q(ejω)

1 + Q(ejω)
. (39)

Note thatE[n], the input to the noise-shaping filter, is equal toZ[n]. The pre-filterF (ejω)

satisfies:

|F (ejω)|2 =
SX(ejω) − D(ejω)

SX(ejω)
. (40)

Theorem 2. The channel of Fig. 10 with the choices above, satisfies:

SX̂−X(ejω) = SV −U(ejω) = D(ejω), −π ≤ ω ≤ π, (41)

with thescalarmutual informationI(D[n]; Y [n]) = R
(

SX , D
)

of (35).

Proof: Since E[n] = Z[n], we have thatV [n] = U [n] + Z[n] ∗ (1 + c[n]) so V [n] and

U [n] are connected by an additive noise channel with noise spectrum D. From here, using the

pre/post filter given by (40), the distortions follow immediately. Since the distortion spectra

{SX̂−X(ejω)} and {SV −U(ejω)} are equivalent and are furthermore equal toD, it also means

that the mutual information ratēI({U [n]}; {V [n]}) = Ī({X[n]}; {X̂[n]}) equals the desired rate

6An alternative time-domain approach, is to accommodate forthe distortion mask by changing the pre and post-filters. However,
we choose the noise-shaping approach for the sake of extending this scheme to the MD setting.

7We assume that the optimal predictorA(z) for the source spectrum exists. If not, then we may use the procedure outlined
in Remark 1 in order to construct a predictor, which satisfiesthe assumption.
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(35). We will now show that̄I({U [n]}; {V [n]}) = Ī({B[n]}; {V [n]}). To do so, we form the

following sequence of equalities:

Ī({U [n]}; {V [n]}) = h̄({Vn}) − h̄({Vn}|{Un}) (42)

= h̄({Vn}) − h̄({Un + (1 + c[n]) ∗ Zn}|{Un}) (43)

= h̄({Vn}) − h̄({(1 + c[n]) ∗ Zn}) (44)

= h̄({Vn}) − h(Zn), (45)

where the last equality follows since1 + C(z) is monic and minimum phase. Similarly, using

that Vn = Bn + Zn, we can show that

Ī({B[n]}; {V [n]}) = h̄({Vn}) − h̄({Vn}|{Bn}) (46)

= h̄({Vn}) − h̄({Bn + Zn}|{Bn}) (47)

= h̄({Vn}) − h̄({Zn}) (48)

= h̄({Vn}) − h(Zn), (49)

which equals (45). At this point we notice that the channel from B to V contains a DPCM loop.

Thus, we can apply [8, Theorem 1] to show that the mutual information rateĪ({B[n]}; {V [n]})
across the channelB ↔ V is equal to the scalar mutual informationI(Dn; Dn + Zn) across the

inner AWGN channelD ↔ Y .

Remark 3. In the special case of a white distortion maskD, the constraint becomes (by

the water-filling principle) equivalent to a regular quadratic distortion constraint. Indeed, the

channel collapses in this case to the pre/post filtered DPCM channel of [8]. Much of the

analysis there remains valid for this problem as well. In particular, we can construct an optimal

coding scheme using this channel, substituting the AWGN foran ECDQ, and the scalar mutual

informationI(D[n]; Y [n]) is also equal to the directed mutual informationI(D[n] → Y [n]).

VI. OPTIMAL TIME-DOMAIN COLORED MD CODING

The similarity between the rates (15) and (35) is evident. Wealso note, that Theorem 2 deals

with achieving the minimum rate subject to a distortion maskconstraint, while Proposition 4

tells us that we must minimize the rate subject totwo distortion mask constraints.
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X̂S [n]

X̂C [n]
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A(z2) F ∗(z)

G∗(z)

C(z)

LPFLPF

Fig. 11. A DSQ/DPCM equivalent channel for MD coding of a colored source.

Fig. 11 shows the adaptation of the distortion-mask equivalent channel to the MD problem.8

Following [3], we combine upsampling by a factor of two with the noise-shaping loop, forming

a DSQ loop.Q(z) andA(z) are the optimal predictors (2) of the spectraΘ̃ andSX , as before.

Note that we apply an upsampled version of the source predictor, namelyA(z2). Since the two

side descriptions consist of the even and odd instances ofV [m], this is equivalent to applying

the predictorA(z) to each description in the original source rate. The DSQ loop, on the other

hand, works in the upsampled rate and the noise-shaping filter C(z) is given by (39). For a white

source,A(z) = 0 and the channel reduces to the DSQ MD scheme of [3], while for optimal side

distortion,C(z) = 0, and the channel reduces to an upsampled version of the DPCM equivalent

channel of [8].

The filtersF (ejω) andG(ejω) play the roles of pre/post filters and satisfy (∀ω):

|F (ejω)|2 =
SX(ejω) − Θ+(ejω) − Θ−(ejω)

SX(ejω)

G(ejω) =
SX(ejω)

SX(ejω) − Θ−(ejω)
F (ejω). (50)

Theorem 3. The channel of Fig. 11 with the choices above, satisfies:

SX̂C−X(ejω) = DC(ejω), −π ≤ ω ≤ π,

SX̂S−X(ejω) = DS(ejω), −π ≤ ω ≤ π, (51)

8We use the indexn for sequences which are “running” at the source rate, and theindex m when referring to the upsampled
rate.
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where the distortion spectra were defined in (17) and (18), while the scalarmutual information

I(D[m]; Y [m]) equals the rateRcolored of (15).

Proof: The derivations of the distortion spectra{DC(ejω)} and{DS(ejω)} proceed similarly

to the first part of the proof of Proposition 4 in Appendix A. That the mutual information

rate Ī({B[m]}; {V [m]}) equals (15) follows from the second part of the proof of Proposi-

tion 4. Finally, from the proof of Theorem 2, it follows that the mutual information rate

Ī({U [m]}; {V [m]}) = Ī({B[m]}; {V [m]}) = I(D[m]; Y [m]), i.e., it is equal to the scalar mutual

information.

Packet 1

2

−

−

−

Packet 2

X[n] U [m] B[m]
B1[n]

B2[n]

D1[n]

D2[n]

V [m]

V1[n]

V2[n]

E[m]

Q(·)

Q(·)
Y1[n]

Y2[n]
Ẽ[m]

F (z)

A(z)

A(z)

C(z)

LPF

Fig. 12. Nested DSQ/DPCM MD encoder.

The encoder and decoder which materialize this equivalent channel are presented in Fig. 12

and Fig. 13, respectively. All of the switches in the encoderand the decoder are synchronized.9

The up sampling operation followed by lowpass filtering introduces a half-sample delay on the

odd samples. This delay is corrected at the decoder by the delay operatorz−1 combined with

the pair of up and downsamplers, see Fig. 13. The outputs of the quantizer blocksQ(·) are the

reconstructed valuesY1[k] and Y2[k]. Moreover, at each timek, the codeword of quantizer 1

(quantizer 2) is entropy-coded (conditioned upon the dither signal) and put into packet 1 (packet

9It is to be understood that the switches change their positions with the upsampled rate (m). Thus, in the encoder shown in
Fig. 12, the even samplesB1[n] of B[m] will go on the upper branch and the odd samplesB2[n] will go on the lower branch.
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Packet 2

2

2

2

decoder
PacketPacket 1

Packet
decoder

X̂1[n]

X̂2[n−1]

X̂C [n]

Y1[n]

Y2[n]

A(z)

A(z)

LPF

F ∗(z)

F ∗(z)

G∗(z)

z−1

Fig. 13. DSQ/DPCM MD decoder.

2). The packet encoding operation is reversed at the decoderin order to obtainY1[k] or Y2[k].

If each quantizer block is taken to be a high-dimensional ECDQ with the required rate, and the

two quantizer dither sequences are mutually independent, then these quantizers are equivalent

to the additive noiseZ[m] of the equivalent channel. Consequently, the two descriptionsY1[n]

and Y2[n] are equivalent to the odd and even samples, respectively, ofY [m] in the equivalent

channel, and finally the whole scheme from the source to the central and side reconstructions is

equivalent to the channel fromX[n] to X̂C [n] and X̂S[n], respectively.

Since we see that this scheme achieves the optimal rate for any choice of spectra, it will

become globally optimal when its parameters are chosen according to the minimizing spectra of

Theorem 1. Thus, the encoder/decoder pair of Figs. 12 and 13 is able to achieve the complete

symmetric quadratic MD RDF for stationary Gaussian sourcesat all resolutions and for any

desired side-to-central distortion ratio.

Remark 4. In the scheme shown in Fig. 12, the two prediction loops are embedded within a

common noise shaping loop. Alternatively, one may alter thenesting order and let the common

noise shaping loop be embedded within the two prediction loops. At high-resolution conditions,

there is no loss of performance by switching the nesting order. However, at general resolution,

the latter approach is suboptimal. The reason is, that for white quantization noise, the DPCM

loop also shows to the outside a total white noise (by the basic DPCM equality [18]), while

the DSQ loop shapes the noise. Since the DPCM loop assumes white noise for optimality [8],

it cannot be built around the shaped DSQ noise.
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VII. CONCLUSIONS AND DISCUSSION

A parametric formulation of the two-description symmetricRDF for stationary colored Gaus-

sian sources and MSE was presented. This result was established by providing a spectral domain

characterization of the optimum side and central distortion spectra. For white Gaussian sources,

the optimum distortion spectral density is a two step function. For colored sources, the optimum

distortion spectral density is generally not piece-wise flat but depends upon the source spectral

density and the desired resolution (i.e., the desired central and side distortion levels). It was

furthermore shown that the symmetric MD RDF could be be achieved by a time-domain approach

based on prediction and noise-shaping. The time domain implementation demonstrated that it

was possible to separate the mechanism responsible for exploiting the source memory (DPCM)

from the mechanism controling the MD coding parameters (noise shaping).

APPENDIX A

PROOF OFPROPOSITION4

We will first find the optimal pre- and post-filters as a function of the noise spectraΘ+ =

{Θ+(ejω)}π
ω=−π andΘ− = {Θ−(ejω)}π

ω=−π. Given these filters, we then find the side and central

distortions (DS, DC) of the coder. We finally derive the mutual information rate within the

system.

Let the side post-filterGs(e
jω) and the central post-filterGc(e

jω) be MMSE filters (i.e. Wiener

filters) so that

Gs(e
jω) =

F ∗(ejω)SX(ejω)

|F (ejω)|2SX(ejω) + Θ+(ejω) + Θ−(ejω)
(52)

and

Gc(e
jω) =

F ∗(ejω)SX(ejω)

|F (ejω)|2SX(ejω) + Θ+(ejω)
(53)

whereF (ejω) is the pre-filter. We match the pre-filter to the additive noise observed at the side

decoders. Thus, we define

|F (ejω)|2 ,
SX(ejω) − Θ+(ejω) − Θ−(ejω)

SX(ejω)
(54)

so that we haveGs(e
jω) = F ∗(ejω) which leads to

|F (ejω)|2 = |Gs(e
jω)|2 = F (ejω)Gs(e

jω). (55)
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It is easy to see that the cross-product filterGc(e
jω)F (ejω) satisfies

Gc(e
jω)F (ejω) =

SX(ejω) − Θ+(ejω) − Θ−(ejω)

SX(ejω) − Θ−(ejω)
(56)

and that

|Gc(e
jω)|2 =

SX(ejω)(SX(ejω) − Θ+(ejω) − Θ−(ejω))

(SX(ejω) − Θ−(ejω))2
. (57)

The side distortionDS is given by

DS = E[d̄(X̂1, X)] (58)

= E[(X(ejω)(F (ejω)Gs(e
jω) − 1)2 + Gs(e

jω)(Z+(ejω) + Z−(ejω)))2] (59)

=
1

2π

∫ π

−π
Θ+(ejω) + Θ−(ejω) dω (60)

and the central distortionDC is given by

DC = E[d̄(X̂C , X)] (61)

= E[(X(ejω)(F (ejω)Gc(e
jω) − 1)2 + Gc(e

jω)Z+(ejω))2] (62)

=
1

2π

∫ π

−π

SX(ejω)Θ+(ejω)

SX(ejω) − Θ−(ejω)
dω. (63)

At this point we recall thatU is the pre-filtered version ofX, i.e., U(z) = F (z)X(z). Let

V1 = U + N1 andV2 = U + N2 whereN1 = Z+ + Z− andN2 = Z+ −Z− and note thatX, N1,

andN2 are mutually independent. In [16], it was shown that the sum rate of a stationary source

can be lower bounded by (with equality in the Gaussian case):

2R ≥ Ī(V1, V2; U) + Ī(V1; V2) (64)

= h̄(V1) + h̄(V2) − h̄(V1, V2|U), (65)

where fori = 1, 2,

h̄(Vi) =
1

2
log(2πe) +

1

4π

∫ π

−π
log(|F (ejω)|2SX(ejω) + Θ+(ejω) + Θ−(ejω)) dω. (66)

In fact, h̄(Vi) = 1
2
log(Pe(Vi)). SinceV1, V2, and U are jointly Gaussian, the conditional dis-

tribution of (V1, V2)|U is also Gaussian. LetΦN1,N2(e
jω) = ΦV1,V2|U(ejω) denote the resulting
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covariance matrix of the noises in a given frequency bandω ∈ [−π; π]. It is easy to see that

ΦN1,N2(e
jω) =









Θ+(ejω) + Θ−(ejω) (Θ+(ejω) + Θ−(ejω))ρ(ejω)

(Θ+(ejω) + Θ−(ejω))ρ(ejω) Θ+(ejω) + Θ−(ejω)









, (67)

where the correlation coefficient−1 < ρ(ejω) ≤ 1 is given by10

ρ(ejω) =
Θ+(ejω) − Θ−(ejω)

Θ+(ejω) + Θ−(ejω)
. (68)

Let | · | denote the matrix determinant and notice that

|ΦN1,N2(e
jω)| = (Θ+(ejω) + Θ−(ejω))2(1 − ρ(ejω)2) (69)

= 4Θ+(ejω)Θ−(ejω). (70)

Sinceh̄(V1, V2|U) = h̄(N1, N2), it follows by use of (65), (66) and (70) that the side description

rate is given by

R =
1

4π

∫ π

−π
log





|F (ejω)|2SX(ejω) + Θ+(ejω) + Θ−(ejω)

2
√

Θ+(ejω)Θ−(ejω)



 dω (71)

=
1

4π

∫ π

−π
log





SX(ejω)

2
√

Θ+(ejω)Θ−(ejω)



 dω. (72)

This proves the theorem.

APPENDIX B

PROOF OFTHEOREM 1

We recognize that the constrained optimization problem given by Corollary 1 forms an

extended isoperimetric problem, which is a family of optimization problems well known in

the literature on calculus of variations [7]. Using the costfunctional (21), it is easy to show that

the Lagrangian in this case is given by:

L(λ1, λ2) =
1

4π
log





SX(ejω)

2
√

Θ+(ejω)Θ−(ejω)



+
λ1

2π
(Θ+(ejω)+Θ−(ejω))+

λ2

2π

SX(ejω)Θ+(ejω)

SX(ejω) − Θ−(ejω)
,

(73)

10If one is only interested in non-positive correlations, thefollowing constraint is required:Θ−(ejω) ≥ Θ+(ejω) > 0, ∀ω.
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whereλi ∈ R, i = 1, 2, are the scalar Lagrangian variables [7]. From (73) we obtain the following

two differential equations:

∂L(λ1, λ2)

∂Θ+(ejω)
= − 1

8π

1

Θ+(ejω)
+

λ1

2π
+

λ2

2π

SX(ejω)

SX(ejω) − Θ−(ejω)
(74)

and
∂L(λ1, λ2)

∂Θ−(ejω)
= − 1

8π

1

Θ−(ejω)
+

λ1

2π
+

λ2

2π

SX(ejω)Θ+(ejω)

(SX(ejω) − Θ−(ejω))2
. (75)

Equating both (74) and (75) to zero and then solving for theirjoint solutions, yields

Θ−(ejω) = Ψ†
λ1,λ2

(ejω) (76)

and

Θ+(ejω) =
SX(ejω) − Ψ†

λ1,λ2
(ejω)

4SX(ejω)(λ1 + λ2) − 4λ1Ψ
†
λ1,λ2

(ejω)
, (77)

which after elimatingλ2 simplifies to

Θ+(ejω) = SX(ejω) − Ψ†
λ1,λ2

(ejω) +
1

2λ1
− SX(ejω)

4λ1Ψ
†
λ1,λ2

(ejω)
. (78)

For a fixed pair(λ1, λ2) ∈ R2, Ψ†
λ1,λ2

(ejω) denotes a real (and positive) root of the third-order

polynomial

Ψ3(ejω) − 4λ1λ2SX(ejω) + 8λ2
1SX(ejω) + λ1

4λ2
1

Ψ2(ejω)

+
2λ1SX(ejω) + 2λ2SX(ejω) + 4λ1λ2S

2
X(ejω) + 4λ2

1S
2
X(ejω)

4λ2
1

Ψ(ejω) − S2
X(ejω)(λ2 + λ1)

4λ2
1

.

(79)

Since (79) is a real third-order polynomial inΨ(ejω), three solutions are possible (of which two

might be complex conjugates). Given a real polynomialx3(ejω)+a2(e
jω) x2(ejω)+a1(e

jω) x(ejω)+

a0(e
jω), where theai(e

jω)’s follows from (79), we let

p(ejω) =
a1(e

jω)

3
− a2

2(e
jω)

9

= − 1

144λ2
1

(−8λ1SX(ejω) − 16λ2SX(ejω) + 16λ1λ2S
2
X(ejω) + 16λ2

1S
2
X(ejω)

+ 16S2
X(ejω)λ2

2 + 1)

(80)
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and

q(ejω) =
1

6
(a1(e

jω) a2(e
jω) − 3a0(e

jω)) − a3
2(e

jω)

27
(81)

= − 1

1728λ3
1

(

96λ1λ2S
2
X(ejω) − 48λ2

1S
2
X(ejω) − 64λ3

2S
3
X(ejω) − 96λ2

2S
3
X(ejω)λ1

+ 96λ2
2S

2
X(ejω) + 96λ2S

3
X(ejω)λ2

1 + 24λ2SX(ejω) + 64λ3
1S

3
X(ejω) + 12λ1SX(ejω) − 1

)

.

(82)

Moreover, lets1(e
jω) = 3

√

q(ejω) +
√

p(ejω)3 + q(ejω)2 ands2(e
jω) = 3

√

q(ejω) −
√

p(ejω)3 + q(ejω)2.

Then, the three solutions are given by [19]

x1(e
jω) = (s1(e

jω) + s2(e
jω)) − a2(e

jω)

3
(83)

x2(e
jω) = −1

2
(s1(e

jω) + s2(e
jω)) − a2(e

jω)

3
+

i
√

3

2
(s1(e

jω) − s2(e
jω)) (84)

x3(e
jω) = −1

2
(s1(e

jω) + s2(e
jω)) − a2(e

jω)

3
− i

√
3

2
(s1(e

jω) − s2(e
jω)). (85)

The discriminantΞ(ejω) of the third-order polynomialx3(ejω)+a2(e
jω) x2(ejω)+a1(e

jω) x(ejω)+

a0(e
jω) is given by

Ξ(ejω) = q2(ejω) + p3(ejω). (86)

There are three cases to consider, depending upon the sign ofΞ(ejω). If Ξ(ejω) > 0, then there is

one real root and two complex roots. IfΞ(ejω) < 0, there are three real distinct roots. Finally, if

Ξ(ejω) = 0, there is a single real triple root (ifq(ejω) = 0) or one real root and one real double

root (if q(ejω) 6= 0) [19]. Thus, for every choice of(λ1, λ2), one may identify the admissible

(i.e. the real and positive) solutions of (83)–(85).

A. Spectral Constraints

Recall thatΘ+ characterizes the noise spectrum of the central distortionand that the sum

spectrumΘ− + Θ+ characterizes the noise spectrum of the side distortion. Thus, we require

that 0 < Θ+(ejω) < Θ−(ejω) < SX(ejω), Θ−(ejω) + Θ+(ejω) ≤ SX(ejω), which further implies

that Θ+(ejω) < SX(ejω)/2, ∀ω ∈ [−π; π]. With this, we may use (76) and (78) and form the
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inequalityΘ+(ejω) + Θ−(ejω) ≤ SX(ejω), which can be rewritten as

Ψ†
λ1,λ2

(ejω) ≤ SX(ejω)

2
. (87)

Moreover, considering the other direction of the inequality, i.e., Θ+(ejω) + Θ−(ejω) > 0, leads

to

Ψ†
λ1,λ2

(ejω) >
SX(ejω)

4λ1SX(ejω) + 2
. (88)

It follows from (87) and (88) thatlimλ1→0 Ψ†
λ1,λ2

(ejω) = SX(ejω)/2.

B. Zeros ofΞ

It easy to show that

Ξ(ejω) = −S4
X(ejω)(4λ2

1S
2
X(ejω) + 1)

432λ6
1

(λ2− ξΞ
0 (ejω))(λ2− ξΞ

1 (ejω))(λ2− ξΞ
2 (ejω))(λ2 − ξΞ

3 (ejω)),

(89)

where{ξΞ
i (ejω)} are the four real roots ofΞ(ejω) given byξΞ

0 (ejω) = 0, ξΞ
1 (ejω) = −λ1,

ξΞ
2 (ejω) = −

2SX(ejω)λ1 + 8S3
X(ejω)λ3

1 − 16S2
X(ejω)λ2

1 − 3 + 2
√

2(2S2
X(ejω)λ2

1 + 1)3

4SX(ejω)(4S2
X(ejω)λ2

1 + 1)
, (90)

ξΞ
3 (ejω) = −

2SX(ejω)λ1 + 8S3
X(ejω)λ3

1 − 16S2
X(ejω)λ2

1 − 3 − 2
√

2(2S2
X(ejω)λ2

1 + 1)3

4SX(ejω)(4S2
X(ejω)λ2

1 + 1)
. (91)

From the Kuhn-Tucker Theorem, it follows that the Lagrangian variables are non-negative,

i.e. λ1, λ2 ≥ 0, see [20] for details. Thus, we only have to consider non-negative multipliers

and it follows thatξΞ
1 (ejω) ≤ 0. Clearly, ξΞ

2 (ejω) < ξΞ
3 (ejω), ∀ω. Moreover, from Lemma 1

below, we notice thatξΞ
3 (ejω) > 0, ∀λ1, λ2 > 0, but the sign ofξΞ

2 (ejω) depends uponλ1. If

λ1 < 1/4SX(ejω) then ξΞ
2 (ejω) < 0, if λ1 = 1/4SX(ejω) then ξΞ

2 (ejω) = 0, and finally if

λ1 > 1/4SX(ejω) thenξΞ
2 (ejω) > 0.

Lemma 1. For λ1 > 0, ξΞ
3 (ejω) > 0. Moreover, the sign ofξΞ

2 (ejω) (90) is given by:

sign(ξΞ
2 (ejω)) =







































− if λ1 > 1
4SX (ejω)

,

0 if λ1 = 1
4SX (ejω)

,

+ if λ1 < 1
4SX (ejω)

.

(92)
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Proof: We first show thatξΞ
3 (ejω) (91) is non-negative. To do so, we show that

2SX(ejω)λ1 + 8S3
X(ejω)λ3

1 − 16S2
X(ejω)λ2

1 − 3 − 2
√

2(2S2
X(ejω)λ2

1 + 1)3 ≤ 0, (93)

which means that (91) is non-negative. Letϕ1(e
jω) = 2SX(ejω)λ1 + 8S3

X(ejω)λ3
1 and

ϕ2(e
jω) = 2

√

2(2S2
X(ejω)λ2

1 + 1)3 and notice that it is enough to show thatϕ1(e
jω) < ϕ2(e

jω), ∀ω.

Since ϕ1(e
jω) and ϕ2(e

jω) are both positive functions, we may work on their squares, i.e.,

ϕ2
1(e

jω) = 4S2
X(ejω)λ2

1+32S4
X(ejω)λ4

1+64S6
X(ejω)λ6

1 andϕ2
2(e

jω) = 64S6
X(ejω)λ6

1+192S4
X(ejω)λ4

1+

192S2
X(ejω)λ2

1+64. Forming the inequalityϕ2
2(e

jω) > ϕ2
1(e

jω) and collecting similar terms yields

64 > −188S2
X(ejω)λ2

1 − 160S4
X(ejω)λ4

1 which is always satisfied forλ1 ∈ R. This proves the

first part of the lemma.

We now consider the sign ofξΞ
2 (ejω) (90). Let ϕ1 = 2x + 8x3 − 16x2 − 3 and ϕ2 =

2
√

2(2x2 + 1)3. The discriminant ofϕ1 is strictly positive soϕ1 has only a single real root,

which is located atξ = 1.96973 where we note thatξ > 1
4
. Moreover,x = 0 ⇒ ϕ1 = −3 and it

follows thatϕ1 < 0 for x < ξ andϕ1 > 0 for x > ξ. Notice also thatϕ2 > 0 for x > 0.

At this point we leth = ϕ2
1 − ϕ2

2 = −256(z − i
2
)(z + i

2
)(z − 1

4
)3, which is a fifth-order

polynomial having a pair of complex conjugate roots atx = ±i/2 and a real (triple) root at

x = 1/4. Thus,h crosses the real line only once. Sinceh = 1 for x = 0 it follows that h > 0

for x < 1/4 andh < 0 for x > 1/4. Furthermore,h = 0 for x = 1/4.

Sinceh > 0 for x < 1/4 it follows that ϕ2
1 > ϕ2

2 which implies thatϕ1 + ϕ2 < 0 since

ϕ1 < 0 for x < 1/4. The first case of (92) now follows by insertingx = λ1SX(ejω) in ϕ1

and remembering the additional sign from (91). Sinceh = 0 implies thatϕ1 + ϕ2 = 0, it

immediately follows thatsign(ξΞ
2 (ejω)) = 0 for x = λ1SX(ejω) = 1/4. Finally, for h < 0 we

haveϕ2
2 > ϕ2

1 which implies thatϕ2 > ϕ1 sinceϕ2 is positive and it follows thatξΞ
2 (ejω) < 0

for λ1SX(ejω) > 1/4. This proves the remaining parts of the lemma.

We have illustrated the possible zero locations ofΞ(ejω) in Fig. 14 using the fact that

limλ2→±∞ Ξ(ejω) = −∞, ∀ω.

C. Negative Discriminant

In this caseΞ(ejω) = q2(ejω) + p3(ejω) < 0 and we have three real solutions. It is easy to

see that we must havep(ejω) < 0 and |p(ejω)|3 > q2(ejω). Let z1(e
jω) = q(ejω) +

√

Ξ(ejω) =

q(ejω) + i
√

−Ξ(ejω) and z2(e
jω) = q(ejω) −

√

Ξ(ejω) = q(ejω) − i
√

−Ξ(ejω) and notice that
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Ξ(ejω)

λ2

ξΞ
0ξΞ

1 ξΞ
2

ξΞ
3

(a) λ1 < 1
4SX(ejω )

Ξ(ejω)

λ2

ξΞ
0

ξΞ
3ξΞ

1,2
ξΞ
2,1

(b) λ1 > 1
4SX(ejω )

Fig. 14. The possible zero locations for the discriminantΞ(ejω) as a function ofλ2 for a givenω. We note that theξΞ
i ’s are

functions ofω.

si(e
jω) = 3

√

zi(ejω), i = 1, 2. SinceΞ(ejω), p(ejω) < 0, it follows that |z1(e
jω)| = |z2(e

jω)| =
√

−p(ejω)3 =
√

|p(ejω)|3. Moreover, the phase is given by

φ1(e
jω) =







































arctan(
√

−Ξ(ejω)/q(ejω)), q(ejω) > 0,

π + arctan(
√

−Ξ(ejω)/q(ejω)), q(ejω) < 0,

π/2, q(ejω) = 0,

(94)

and φ2(e
jω) = −φ1(e

jω). Thus, φ1(e
jω) ∈ [0; π]. The value ofφ1(e

jω) depends uponq(ejω),

which is a third-order real polynomial inλ2 having a negative (or zero) discriminant. Thus, it

has three real roots{ξq
i (e

jω)}, i = 0, 1, 2, which after some algebra can be shown to be given

by

ξq
0(e

jω) =
1

2SX(ejω)

√
6
√

2S2
X(ejω)λ2

1 + 1 cos

(

φq(e
jω)

3

)

− λ1

2
+

1

2SX(ejω)
, (95)
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ξq
1(e

jω) = − 1

4SX(ejω)

√
6
√

2S2
X(ejω)λ2

1 + 1







√
3 sin

(

φq(e
jω)

3

)

+ cos

(

φq(e
jω)

3

)





− λ1

2

+
1

2SX(ejω)
, (96)

ξq
2(e

jω) =
1

4SX(ejω)

√
6
√

2S2
X(ejω)λ2

1 + 1





−
√

3 sin

(

φq(e
jω)

3

)

+ cos

(

φq(e
jω)

3

)





− λ1

2

+
1

2SX(ejω)
, (97)

where

φq(e
jω) = arctan

(

1

9

√

768S6
X(ejω)λ6

1 + 1152S4
X(ejω)λ4

1 + 576S2
X(ejω)λ2

1 + 15
)

. (98)

Moreover,limλ2→∞ q(ejω) = ∞ and limλ2→−∞ q(ejω) = −∞. Thus,q(ejω) > 0 if λ2 > ξq
0(e

jω)

or if ξq
1(e

jω) < λ2 < ξq
2(e

jω).

With this, it is easy to show that the solutions (roots),{xi(e
jω)}3

i=1, as given by (83)–(85),

can be written as

x1(e
jω) = 2

√

|p(ejω)| cos(φ1(e
jω)/3) − a2(e

jω)

3
, (99)

x2(e
jω) = −

√

|p(ejω)|
(

cos(φ1(e
jω)/3) +

√
3 sin(φ1(e

jω)/3)
)

− a2(e
jω)

3
, (100)

x3(e
jω) = −

√

|p(ejω)|
(

cos(φ1(e
jω)/3) −

√
3 sin(φ1(e

jω)/3)
)

− a2(e
jω)

3
. (101)

We note that

min
ζ∈[0;π]

2 cos(ζ/3) ≥ max
ζ∈[0;π]

−(cos(ζ/3) −
√

3 sin(ζ/3)) (102)

and that

min
ζ∈[0;π]

−(cos(ζ/3) −
√

3 sin(ζ/3)) ≥ max
ζ∈[0;π]

−(cos(ζ/3) +
√

3 sin(ζ/3), (103)

which implies thatx1(e
jω) ≥ x3(e

jω) ≥ x2(e
jω) for any pair(λ1, λ2) and for allω ∈ [−π; π].

Let us first consider the solutionx3(e
jω) given by (101). From Lemma 2 below, it follows

thatx3(e
jω) > SX(ejω)/2, which violates the spectral constraint (87). Moreover, sincex1(e

jω) >

x3(e
jω), we deduce thatx2(e

jω) given by (100) is the only admissible solution.
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Lemma 2. Let Ξ(ejω) < 0. Then, for any positiveλ1 and λ2, x3(e
jω) > SX(ejω)/2, ∀ω, where

x3(e
jω) is given by (101).

Proof: Since Ξ(ejω) < 0, we only need to considerp(ejω) < 0. Thus,
√

|p(ejω)| =
√

−p(ejω). Moreover, ∂2

∂λ2
2

√

|p(ejω)| =
c(ejω) (4S2

X
(ejω)λ2

1−1)√
|p(ejω)|3

, for some everywhere positive func-

tion c(ejω). It follows that for λ1 > 1
2SX(ejω)

,
√

|p(ejω)| has increasing slope inλ2. Taking

the limit λ2 → ∞ shows that the maximum slope of
√

|p(ejω)| is SX(ejω)
3λ1

. On the other

hand,−a2(ejω)
3

> 3SX(ejω)/2 and is increasing inλ2 with constant slopeSX(ejω)
3λ1

. Moreover,

cos(φ1(e
jω)/3) −

√
3 sin(φ1(e

jω)/3) ≤ 1. Thus,x3(e
jω) ≥ −

√

|p(ejω)| − a2(ejω)
3

> 3SX(ejω)/2

for λ1 > 1/(2SX(ejω)).

Let us now instead assume thatλ1 < 1
2SX(ejω)

, which is a high distortion situation since

from (88) it follows that havingλ1 < 1/(2SX(ejω)) implies thatΘ−(ejω) > SX(ejω)/4, ∀λ2. In

this case−
√

|p(ejω)|−a2(e
jω)/3 is concave inλ2. Clearly,[−

√

|p(ejω)|−a2/3]λ2=0 > SX(ejω)/2

and we know from above that in the limitλ2 → ∞,−
√

|p(ejω)|−a2(e
jω)/3 > SX(ejω)/2. Thus,

since we can lower bound a concave function by an affine function, it follows that−
√

|p(ejω)|−
a2(e

jω)/3 > SX(ejω)/2. Thus,x3(e
jω) > SX(ejω)/2 as was to be proven.

D. Positive Discriminant

In this caseΞ(ejω) > 0 and we have only a single real solution given byx1(e
jω) (83).

E. Zero Discriminant

In this caseΞ(ejω) = 0, which is possible if−p3(ejω) = q2(ejω). The positive zeros of

Ξ(ejω) are given byξΞ
2 (ejω), ξΞ

3 (ejω), where the former is only positive ifλ1 < 1
4SX(ejω)

. Since

q(ejω) 6= 0 when Ξ(ejω) = 0, there are two real solutions i.e.,x1(e
jω) and x2(e

jω) = x3(e
jω).

We now show thatx1(e
jω) is the desired solution.

Let λ2 = ξΞ
3 (ejω) for someω. Then it is easy to show thats1(e

jω) = s2(e
jω) < 0 and clearly

−a2(e
jω)/3 > SX(ejω)/2. Thus, x2(e

jω) = x3(e
jω) = −1

2
(s1(e

jω) + s2(e
jω)) − a2(e

jω)/3 >

SX(ejω)/2, which is not an admissible solution.

Now let λ2 = ξΞ
2 (ejω), which is positive if and only if0 < λ1 < 1/(4SX(ejω)). Moreover,

assume thatq(ejω) < 0 since otherwisex2(e
jω) = x3(e

jω) is clearly greater thanSX(ejω)/2. We
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first show thatp(ejω) < 0 for λ2 = ξΞ
2 (ejω). After some algebra, we get

p(ejω)|λ2=ξΞ
2 (ejω) =

1

72λ2
1(4S

2
X(ejω)λ2

1 + 1)2
(ϕ1(e

jω) − ϕ2(e
jω)), (104)

where

ϕ1(e
jω) = 16

√
2
√

(2S2
X(ejω)λ2

1 + 1)3S2
X(ejω)λ2

1 + 2
√

2
√

(2S2
X(ejω)λ2

1 + 1)3 (105)

and

ϕ2(e
jω) = 3 + 26S2

X(ejω)λ2
1 + 104λ4

1S
4
X(ejω) + 128S6

X(ejω)λ6
1. (106)

Sinceϕ1(e
jω) andϕ2(e

jω) are both positive functions, we can work on their squares, and form

the inequalityϕ2
2(e

jω) − ϕ2
1(e

jω), that is

ϕ2
2(e

jω) − ϕ2
1(e

jω) = 1 − 20S2
X(ejω)λ2

1 − 76λ4
1S

4
X(ejω) + 1504S6

X(ejω)λ6
1 + 10304S8

X(ejω)λ8
1

+ 22528λ10
1 S10

X (ejω) + 16384S12
X (ejω)λ12

1 , (107)

which is clearly positive for all0 < λ1 ≤ 1/(4SX(ejω)).

Let us now consider the zeros ofΞ(ejω) = q2(ejω) + p3(ejω) and q2(ejω) from a geometric

point of view. First,q(ejω) is a third-order polynomial andq2(ejω) is a non-negative sixth-order

polynomial that shares zeros withq(ejω). Moreover,p(ejω) < 0 as we established above and

thereforep3(ejω) < 0 for λ2 = ξΞ
2 (ejω). If we consider the middle zero ofq2(ejω), i.e., ξq

2(e
jω),

then adding the negative functionp3(ejω) to q2(ejω) will result in two zeros around the point

λ2 = ξq
2(e

jω) instead of a single zero atλ2 = ξq
2(e

jω). In fact, the smaller of the zeros becomes

ξΞ
1 (ejω) and the larger zero becomesξΞ

2 (ejω). But then clearlyξq
0(e

jω) > ξΞ
2 (ejω) ≥ ξq

2(e
jω) and

it follows that q(ejω) < 0 for λ2 = ξΞ
2 (ejω). This shows thatx2(e

jω) = x3(e
jω) > SX(ejω)/2

also forλ2 = ξΞ
2 (ejω).

The solution forΞ(ejω) = 0, is therefore given byx1(e
jω).

F. Summarizing Solutions

In the above we have shown that there is always only a single possible solution for anyλ1, λ2.

Specifically, if Ξ(ejω) < 0, then the optimal solution isx2(e
jω) (100) whereas ifΞ(ejω) ≥ 0,

then the optimal solution isx1(e
jω) (84). In all cases, the spectral constraints in Appendix B-A

must be satisfied.
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This proves the theorem.

APPENDIX C

PROOF OFPROPOSITION5.

A. Caseλ1 > 0 and λ2 ≫ 1

In this case, we note that

Ξ(ejω) = −λ4
2S

4
X(ejω)

432λ6
1

(1 + 4S2
X(ejω)λ2

1) + O
(

λ3
2

λ3
1

)

. (108)

It follows that Ξ(ejω) < 0 for largeλ2. Furthermore,

q(ejω) =
λ3

2S
3
X(ejω)

27λ3
1

+ O
(

λ2
2

λ2
1

)

(109)

andφ1(e
jω) = arctan

(√
−Ξ(ejω)

q(ejω)

)

.

We use the solutionx2(e
jω) given by (84) and need to carefully address its limiting behavior

in λ2, since the dominating terms cancel. The first-order Taylor approximation ofarctan(x) is

arctan(x) = x + O(x2), ∀|x| ≤ 1. Thus,

φ1(e
jω) = arctan







√

−Ξ(ejω)

q(ejω)





 =
3
√

3

4SX(ejω)λ2

√

1 + 4S2
X(ejω)λ2

1 + O




λ3
1

√

λ3
2



 , (110)

where the approximation becomes an equality in the limit asλ2 → ∞ since this implies that

φ1(e
jω) → 0. Similarly, for all x,

cos(x/3)+
√

3 sin(x/3) = 1+

√
3

3
x+O(x2), (cos(x/3)+

√
3 sin(x/3))2 = 1+

2
√

3

3
x+O(x2).

(111)

Let α(ejω) = cos(φ1(e
jω)/3) +

√
3 sin(φ1(e

jω)/3). Then, we can write

x2(e
jω) = −

√

|p(ejω)|α(ejω) − a2(e
jω)

3
(112)

=
|p(ejω)|α(ejω)2 − a2(ejω)2

9

−
√

|p(ejω)|α(ejω) + a2(ejω)
3

. (113)

From (111) and using (110), it follows that

α(ejω)2 = 1 +
3

2SX(ejω)λ2

√

1 + 4S2
X(ejω)λ2

1 + O




λ3
1

√

λ3
2



 . (114)
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With this, we can write the numerator of (113) as

|p(ejω)|α(ejω)2 − a2(e
jω)2

9
= −SX(ejω)λ2

6λ2
1

(

2SX(ejω)λ1 + 1 −
√

1 + 4S2
X(ejω)λ2

1

)

+ O
(

λ1√
λ2

)

.

(115)

On the other hand, sincelimλ2→∞ α(ejω) = 1, ∀ω, the denominator of (113) can be written as

(for largeλ2)

−
√

|p(ejω)|α(ejω) +
a2(e

jω)

3
≈ −2SX(ejω)λ2

3λ1
. (116)

Substituting (115) and (116) into (113) yields

Θ−(ejω) =
1

4λ1

(

2SX(ejω)λ1 + 1 −
√

1 + 4S2
X(ejω)λ2

1

)

+ O




λ2
1

√

λ3
2



 , (117)

so that

lim
λ2→∞

Θ−(ejω) = lim
λ2→∞

x2(e
jω) =

1

4λ1

(

2SX(ejω)λ1 + 1 −
√

1 + 4S2
X(ejω)λ2

1

)

. (118)

B. Caseλ1, λ2 ≫ 1

We note that when assumingλ1/
3
√

λ2 → 0, then the results for finiteλ1 in Section C-A remain

valid. We rewrite (117) as

Θ−(ejω) =
1

4λ1

(

2SX(ejω)λ1 + 1 −
√

1 + 4S2
X(ejω)λ2

1

)−(2SX(ejω)λ1 + 1) −
√

1 + 4S2
X(ejω)λ2

1

−(2SX(ejω)λ1 + 1) −
√

1 + 4S2
X(ejω)λ2

1

+ O




λ2
1

√

λ3
2



 (119)

=
1

4λ1

4SX(ejω)λ1
√

1 + 4S2
X(ejω)λ2

1 + 2SX(ejω)λ1 + 1
+ O





λ2
1

√

λ3
2



 (120)

=
1

4λ1

cλ1(e
jω) + O





λ2
1

√

λ3
2



 , (121)

wherecλ1(e
jω) = O(1) and limλ1→∞ cλ1(e

jω) = 1, ∀ω. Inserting this into (27) yields

Θ+(ejω) =
1

4(λ1 + λ2) + O
(

λ2
1√
λ3
2

) + O




λ2
1

λ1

√

λ3
2 + λ2

√

λ3
2

+
1

λ2
1 + λ1λ2



 . (122)
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Finally, it follows from (121) and (122) that

lim
λ1,λ2→∞
λ1/3√λ2→0

λ1Θ− =
1

4
, (123)

and

lim
λ1,λ2→∞
λ1/3√λ2→0

λ1Θ+(λ1 + λ2) =
1

4
. (124)
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