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Abstract

Motivated by the streaming video application, we propose a linear predictive quanti-
zation system for causally transmitting parallel sources with temporal memory (colored
frames) over an erasure channel. By optimizing within this structure, we derive an
achievability result in the high-rate limit and compare it to an upper bound on per-
formance. The proposed system subsumes the well-known PCM and DPCM systems
as special cases. While DPCM performs well without erasures and PCM performs well
with many erasures, but not vice versa, we show that the proposed solution improves
performance over them under all severities of erasures, with unbounded improvement
in some cases.

1 Introduction

The coding and transmission of colored sources under a variety of constraints is a problem
of practical interest. The linear predictive structure as exemplified by DPCM has long been
favored in solutions to this problem for its intuitive appeal and simplicity.

Classically, scalar DPCM was used for audio and scanline image and video coding, due
to its lower bit rate relative to, e.g., PCM and the practicality of sequential processing. In
recent years, inspired by the structure of interframe motion prediction in video coders, there
has been renewed interest in the vector DPCM structure for which optimality as measured
against fundamental bounds was proved in several instances. In [1], it is shown that for
stationary Gaussian sources, the Gaussian rate-distortion bound is achievable at all rates by
vector-quantized DPCM if non-causal pre- and post-filtering is allowed. In [2], an implicit
consequence of the analysis applied to the stationary setting shows that for Gauss-Markov
sources, DPCM with causal MMSE estimation is optimal among all causal systems.

In this paper, we take a line of inquiry similar to [2|, but also consider channel errors.
In applications such as real-time internet video conferencing, it is realistic that both a
causality constraint on coding and errors during transmission are present. The combination
is particularly interesting because causality severely limits what can be done about the
errors, e.g., channel coding is impossible. Although in this paper we do not determine what
the generally optimal coding system is for this set of constraints, we do determine what is
optimal among linear predictive structures under a few assumptions. The linear predictive
structure is chosen as a productive starting template for several reasons: (1) since the very
beginning of DPCM, it was recognized that adverse effects of channel errors were reduced



by altering predictors in DPCM |[3, 4]; and (2) engineering practice in, e.g., video coding
gives the impression that good prediction (interframe coding) can be traded for robustness
against errors (intraframe coding).

After we formulate the problem more precisely in Section 2, we consider the linear
predictive quantization system that generalizes both DPCM and PCM as a solution in
Section 3, where we also show its behavior on simple sources. We optimize performance for
general stationary Gaussian sources in the high-rate limit in Section 4, and give closed-form
solutions for performance comparisons.

2 Problem formulation

The practical scenario we model is the following. Frames of data indexed by time are given
to the encoder to be immediately encoded (e.g., quantized) at some fixed rate and then
transmitted as packets across a link that erases packets at certain times. A decoder receives
either the correct packet or knows the packet is erased, and immediately decodes and renders
a reproduction frame, possibly aided by intelligent concealment making up for any missing
data. Finally an end-to-end distortion is found for that rate. We look for the encoder and
decoder pair that optimizes the end-to-end distortion performance in the system. More
specifically:

2.1 Source model

Let {s[t]}+ = {(s1[t], ..., sn][t])}+ be a vector of N parallel source sequences, which can be
viewed as a sequence of frames. In deference to the analogy of video coding, the bracketed
index t is the temporal dimension and the N vector components make up the typically very
large spatial dimension. We assume the source is:

1. Spatially ii.d.: For all ¢, {s;[t]}; is independent of {s;[t]}; whenever i # j, and they
have the same distribution. We omit the spatial index ¢ when referring to a represen-
tative scalar sequence {s;[t]}; should there be no ambiguity.

2. Temporally autoregressive: Each scalar stream {s[t]}; is stationary AR(P), character-
ized by s[t] = z[t] + 25:1 aps[t — p|, with white innovation process z[t] ~ N(0,%,),
and aq, ..., ap such that all roots of 1 — 2521 apz 7P satisfy |z| < 1.

Denote by ®,(f) = %./|1 — A(f)]* the power spectral density of s[t], where A(f) =
1

2521 ape I2mIP The source variance is X5 = [2;, ®5(f)df. The distortion-rate function
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D4(R) of the scalar process {s[t]}; at sufficiently high rates (R > 3log sup [1 — AP,

where the Shannon Lower Bound is tight) is,
Dy(R) = %272 (1)

which equals the distortion-rate of the innovation process {z[t]}+ (cf. [5], p. 233).
In the rest of this paper we always normalize >, = 1, so the P parameters ay,...,ap
(equivalently, A(f)) entirely characterize the source.



2.2 Channel model

At each time ¢, the channel C(+) is capable of transmitting a packet of N R bits. The channel
has two states. The channel state is an i.i.d. process described by an erasure probability e.
In the normal or no-erasure state occuring with probability 1 — €, the input is reproduced
exactly at the output. In the erasure state occuring with probability €, the output is a special
lost packet symbol @ immediately recognizable by the decoder, but there is no feedback to
the encoder.

2.3 Encoder and decoder models

At time ¢, the causal encoder takes current and past source vectors s[t],s[t — 1], ... as input
and produces a packet & = E(s]t],s[t —1],...) of NR bits. The causal decoder takes current
and past receptions C(&;),C(Ei—1), ... and outputs §[t] = D(C(&),C(Ei-1), ...), a reproduction
of the newest source vector sl[t].

2.4 Performance and objective

The average end-to-end distortion per scalar sample between source s[t] and its reproduc-
tion §[t] at time t is MSE distortion averaged over the spatial dimension: d(s[t],8[t]) =
+ Zz’]\i1(3i [t] — 3:[t])%. Define the time-averaged expected distortion to be:

where expectation is taken over all source and channel realizations. The objective of the
problem is to minimize the excess distortion ratio

L(R;€) £ D(R;€)/Ds(R) = D(R;€) /272

for the supplied R and €, by designing the encoder and decoder. We see later that when
looking at the high-rate limit, it is more insightful to let R grow and e shrink such that
A\ 2 ¢/2728 ig a fixed constant. In that case, the figure of merit becomes

L*(\) 2 dim L(R; A2728) (0 < X < o0) (2)

3 Preliminary insights

It is not known what general causal encoder/decoder pair minimizes average distortion
when erasures are possible. However, we can consider the problem within the class of linear
predictive quantization systems for reasons of tractability and importance that such systems
play in engineering practice. We defer the main results to the next section. In this section,
we first show how standard DPCM and PCM perform without, then with, erasures for an
AR(1) source. We then propose a way to optimize predictors for this simple source by “leaky
prediction,” which is introduced here not as a novel scheme but to give intuition for more
general sources in Section 4.
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Figure 1: A causal, linear predictive quantization system model. Q is a quantizer coding
the N-vector x[t].

3.1 Linear predictive quantization system

While more general structures are possible, Fig. 1 shows the linear predictive encoder and
decoder structure we consider in this paper. As required by the problem formulation, the
encoder and decoder incur no delay, but both are allowed to access their entire causal history
and adapt to inputs.

A “standard” (fully predictive) DPCM system for the AR(P) source uses the P-th order
filter, with tap weights a1, ..., ap equal to the source parameters, in both the encoder and
decoder predictors. On the other hand, placing all-zero filters in the encoder and decoder
predictors makes the system equivalent to PCM with no prediction. Therefore, the system
here subsumes both DPCM and PCM and admits a type of continuous hybridization between
full-prediction and no-prediction systems.

The quantizer Q takes the differential signal x[t] = s[t] — Eszl B8'[t — k| as input and
outputs X'[t] € X, € RN at rate R per scalar sample (H(X'[t]))/N = R). We model the
quantizer Q as a “forward” AWGN channel, where q[t] is independent of x[t]. This is a
common abstraction and is realized via entropy-constrained dithered quantization. (See [1]
for examples and further references.)

Since the channel introduces erasures of an entire packet only, we neglect bitstream
encoding and decoding, by assuming the channel passes X'[t] itself to the decoder as X[t] in
the no-erasure state. The following standard “DPCM identity” |3| holds:

§'[t] — s[t] = X[t] — x[t] = qt] (3)

where q[t] is the quantization error and §'[t] is the encoder’s current reconstruction.

The encoder’s source-tracking signal §'[t] is produced by the encoder’s K-th order causal
linear predictor operating on the encoder’s past reconstructions: §[t] = &/[t]+ >+, Br8'[t —
k]. The decoder uses an L-th order causal linear predictor to reconstruct the current sample
8[t): 8[t] = R[t] + S, vi8[t — 1]

We are interested in the regime of the combination of the following limits:

1. Large spatial dimension: N — oo. This allows analyzing the scalar version of the
problem, while remembering that the quantizer Q still achieves vector quantization
performance, as it codes numerous independent samples. If x[t] is zero-mean Gaussian
with variance X, the quantization error has variance

Bg = 8./ (2*F - 1) (4)

Practically, a finite dimension suffices, and at N = 1, results are correct up to a loss

of £ log(2%) bits per scalar sample.



2. Sparse erasures: §'[t — 1] = §[t. — 1] before an erasure at t.. This allows analyzing
each erasure separately as their distortion effects interact additively. This happens
when erasures occur far apart compared to system memory.

3. High rate: R — oo. Consequently, ¥, < X, < 3.

3.2 One-tap prediction for AR(1) Gaussian sources

Before more general results, we first interpret some standard systems as special cases of the
linear predictive quantization system, and show their performances for coding the relatively
simple AR(1) Gaussian source. Then we find their performances when there are channel
erasures. Finally, we show ways to improve upon them via “leaky prediction.”

3.2.1 DPCM and PCM without error

For the standard DPCM system, the predictors are “matched” to the source and use only
one tap of weight 81 = 71 = ;. In this case, the differential signal x[t] is Gaussian with
variance X, + ai¥,, and so

pI 1

Dppem(R;0) = =
20— 2R _1_q?

Contrast this with the PCM encoder, which achieves distortion-rate

s 1
Dren(B0) = om 3 = T=apy@m = 1)

For R > 1/2 (all R if the quantizer Q is optimal), we observe that Dppca(R;0) <
Dpon(R;0) for all g # 0, as is well known.!

3.2.2 DPCM and PCM with error

When an erasure occurs, the encoder-decoder asynchrony replaces the quantization error
q[t] by an error which equals —z[t] instead, which then gets filtered through the decoder
predictor loop. With an imperfect channel, the choice of decoder for a given encoder becomes
less obvious.
Under DPCM, where we still use 51 = 71 = aq, the distortion-rate function is
1 1-3

2
o

Dppcm(R;€) = Dppom(R;0) + ¢ o 1o azl Dppcm(R;0)
1 1

For PCM, 1 = 1 = 0is standard. However, for the sample on which an erasure occurs, the
decoder can do significantly better by switching to the DPCM decoder (v = a1). When we
refer to PCM throughout the remainder of the paper, we will always mean PCM with this
decoder modification during erasures. Therefore,

Dpem(R;€) = Dpem(R;0) + € [1 — (1 — af)Dpem(R; 0)]

It can be verified that there is some critical error threshold eg(R) such that Dppom(R;€) <
Dpom(R;e) if € < €9 but Dppem(R;€) > Dpem(R;€) if € > €.

1t is also known that a single-tap, source-matching predictor is not optimal for the no-erasure case except
in the high-rate limit [6, 7].



3.2.3 One-tap leaky prediction

The fact that neither PCM nor DPCM dominates over all error severities suggests that a
more flexible predictor in the encoder, coupled with a suitable predictor in the decoder, can
improve performance over both schemes.

In lieu of the extremal encoder predictors of DPCM (31 = a3) or PCM (8, = 0), we
optimize over all one-tap predictors B1. The result is sometimes termed “leaky prediction”
[8], as some of the original signal energy in s[t] leaks through to the next time step. Unlike
DPCM or PCM, there is no standard “leaky prediction” system as a convention to draw on
for the decoder predictor. Nevertheless, analogous to the DPCM or PCM cases, we use a
decoder matched to the encoder predictor (i.e., 73 = (1) when there are no erasures, and a
DPCM predictor (i.e., 71 = o) whenever there is an erasure. 2

Without erasures, the error signal s[t]—5[t] has variance Dieay (R; 0) = X,. The quantizer
input is z[t] = (a1 — 1) s[t—1] — B1q[t— 1]+ z[t]. As the summands are mutually independent
terms, the distortion amounts to

2
chaky(R; 0) = |:1 + M] (22R —1- ﬂ%)_l
1—-oaf

When there is an erasure at time ¢, the encoder-decoder asynchrony propagates error for
t > t, and replaces the no-erasure identity §[t]—s[t] = q[t] by 8[t] —s[t] = q[t] — ¢4 (2[t] —
a1q[te — 1] + q[tc]). Taking these errors into account, the distortion rate function is

1 1—a? — 262
1— 32 1— 32
Fig. 2 shows that the optimal amount of prediction “leakage” as captured by 1 = g*
produces a hybrid between DPCM and PCM, and shifts from better prediction (DPCM,
8% — a1) to better error resilience (PCM, 5* — 0) as the error severity € increases. Fig. 3
shows leaky prediction outperforming both DPCM and PCM.

chaky(R; 6) = chaky(R; 0) + € |: Dloaky(R; O)

3.2.4 High-rate limit

In the high-rate limit, the performances in terms of excess distortion ratio (2) become:

A
1
L3N = X+ A= 5 T A (6)
(a1 — f1)? A
o) = |1
leaky( ) |: + 1— a% + 1— 5% (7)

All three expressions show distortion composed of two terms, the first being distortion caused
by quantization, and the second, distortion caused by channel erasures. In DPCM the first
term is smaller than in PCM, at the expense of the second being larger, as expected. In
the high-rate limit, the threshold for PCM being better than DPCM is met with A =1, i.e.,
co(R) = 272R. However, in leaky prediction, the encoder predictor 4 adjusts the weight
between the two terms, and can be optimized for a given A, therefore outperforming both
PCM and DPCM.

20r, equivalently, when an erasure occurs, we use the error-free decoder but “simulate” the missing
decoder input as Z[t] = (an — B1)8[t — 1].
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Figure 2: Encoder predictor g1 = g* that Figure 3: DPCM, PCM, and one-tap leaky
minimizes Dicaky (R;€) for R = 3 bits/sample prediction performance compared for an
and various values of ay = {0,0.1,0.2,...,0.9}  AR(1) source with a; = 0.7, R = 3. The crit-
(bottom to top). ical error threshold is nearly eg(R) = 272F,

4 Main results

The previous section shows that for AR(1) sources, one-tap leaky prediction gives better
performance than DPCM and PCM. As we will see shortly, one-tap predictors are not
optimal for AR(1) sources when there are erasures, even in the high-rate limit. In this
section, we derive optimized predictors for the linear predictive quantization system for
colored Gaussian sources in the high-rate limit.

In order to be able to evaluate the systems we develop more meaningfully, we first develop
a performance bound that no causal system can outperform.

4.1 Performance bound

As before, Dg(R) is the distortion-rate function of the source s[t]. Da(R) is the average
additional distortion for each erasure under some particular scheme, and D, is the average
distortion on just the erased sample. The distortion can be lower-bounded as:

D(R;e) = (1—¢)D(R;0)+ ¢(D(R;0) + Da(R))
Z (1—€)DS(R)+ED€
> (1—e)272 ¢
D(R;0) > Ds(R) by the definition of the distortion-rate function. D(R;0) + Da(R) is
the total distortion on and following an erasure at some time ¢, which is greater than the
distortion at t. only, which is in turn lower-bounded by the error variance of the optimal
predictor of s[t.] from its entire causal past s[t. — 1], s[te — 2], .... This is simply the variance
of the innovation process >, = 1.
In the high-rate limit, the excess distortion ratio satisfies

L®() > 14 A (8)
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Figure 4: Performance comparison (A = 2) between three systems and the bound of (8), for
sources in Example 3. The performance gaps from both DPCM or PCM to the system with
optimized parameters is unbounded when u is taken arbitrarily large.

4.2 Achievable performance for colored sources at high rate

We have the following result on the performance achievable by schemes of the form of Fig.
1.
Theorem 1. Let s[t] be a stationary Gaussian source with power spectral density ®s(f) and

1
unit entropy power, i.e., Ns = exp [2, log ®s(f)df = 1. The excess distortion ratio (2) of
2

sy . > D,(f) !
L=(A) —q)v(;l)l}]lvlv:l/_é @v(f)der)\/_l ,(f)df 9)

2

is achievable, where ®,(f) is any valid power spectrum and N, is its entropy power.

We call the minimizing ®}(f) the spectrum of a wvirtual source. The optimal encoder
predictor to achieve this L®°(\) is the DPCM predictor for this virtual source, not for the
actual source s[t]. We will also see that this encoder predictor is a spectral compromise
between the DPCM predictor and PCM predictor for st].

It is easily verified that L>°(\ = 1) is achieved by ®%(f) = /®s(f)-

Example 2. Applying the A = 1 case to an AR(1) Gaussian source, the virtual source
spectrum /®,(f) =1/ ‘1 — ale—j27rf| is clearly not AR(1). Thus, the possibility of a one-
tap optimal encoder predictor for s[t] is precluded.

Example 3. Applying the result beyond finite-order AR(P) sources, let s[t] be a colored
Gaussian source with a two-level spectrum: ®(f) = u > 0for |f| < 1/4 and ®4(f) = u~! for
1/4 < |f| < 1/2. (Note that with these parameterization, Ny = 1 for all w > 0.) The optimal
virtual source spectrum will also be two-level, i.e., ®¥(f) = v* for |f| < 1/4 and ®}(f) =
v*~!for 1/4 < |f| < 1/2. The minimization (9) then amounts to min,q u/v+v/u+Av+\/v.
Solving gives v* = /(A +u)/(A +u~1).
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Figure 5: The equivalent system at the decoder. When a sample is not erased, the entire
decoder implements 1/(1—B(f)). When a sample is erased, the first two filters are effectively
bypassed as the decoder sets Z[t] to 0.

Compare with Lppecm(A) = 1+ A (u+u™") /2 and Lpey(A) = (w4 u™t)/2 4+ A for
this source. For u > 1, L.()\) grows as y/u, while Lppom(A) and Lpcy(A) both grow as
u, s0 the performance gap, as measured by excess distortion incurred by DPCM or PCM
over the proposed system, can be arbitrarily large. Fig. 3 compares these systems and the
performance bound.

4.3 Achieving the performance by predictive schemes

Let B(f) = Eszl Bre 27Tk T(f) = Zlel e 7271 be respectively the frequency-domain
representations of the encoder and decoder predictors. Let {-}. denote the causal minimum-
phase filter with spectrum in the argument. We show next that a linear predictive quanti-
zation system, with encoder predictor B*(f) =1 — {1/®}(f)},, decoder predictor I'*(f) =
B*(f) on a non-erased sample, and decoder predictor I'"*(f) =1 — {1/®(f)}, on an erased
sample, achieves L>°(\) in Theorem 1.

Without erasures,

2 2

1_B(f) 1_B(f) Ex(2_2R_1)

1-T(f) 1-T(f)

so in the high-rate limit, 3s_; is minimized by choosing a matched decoder predictor I'(f) =
B(f), leaving the error-free distortion as

et|

D,(R;0) = x,2728 (10)

where X, = f2 fdf = f21 11 — B(f)|* ®s(f)df. The minimal D, (R;0) can be achieved

by choosing the unique stable strlctly causal predictor B(f) that minimizes 3,. This
occurs when ®,(f) is white, hence |1 — B(f)|*> = N,/®(f) and the optimal error-free
encoder predictor is B(f) =1 — {Ns/®s(f)},. For example, an AR(P) source {s[t]}; with
innovation variance ¥, = 1 has power spectral density ®,(f) =1/ |1 — A(f)|? from Section
2.1. The optimal error-free encoder predictor B(f) is then the standard source-matching
DPCM predictor B(f) = A(f), as expected.

When erasures are possible, the encoder predictor B(f) is time-invariant as the encoder
receives no feedback. However, the decoder can adapt. Referring to Fig. 5, suppose the de-
coder internally derives an estimated innovation sequence {Z[t]}; by filtering {Z[t]}; through
1/(1 — B(f)) followed by 1 — A(f). The decoder is to produce the best estimate of s[t] by
applying a third filter, which we claim to be 1/(1— A(f)). In the high-rate limit, 2[t| — z[t].
An erased sample of Z[t] corresponds to a missing sample of Z[t], which the decoder “patches”
with its best causal estimate EZ[t|t — 1,¢t — 2,...] = Ez[t] = 0. It is clear that the patched



innovation sequence Z[t] contains all the information the decoder has about s[t] and apply-
ing the reconstruction filter 1/(1 — A(f)) to Z[t] reconstructs the best estimate of s[t]. This
means that, for unerased samples, the decoder’s effective decoder predictor is I'(f) = B(f),
while for erased samples, it is I'(f) = A(f). Furthermore, this adds an error propagation
process that is Z[t]d[t — t] filtered by 1/(1 — B(f)), whenever &]t] i? an erased sample. In

the high-rate limit, this results in an additional distortion of Da = [2, 1/ |1 — B(f)|* df for
2

each erasure. Thus, the average distortion with erasures for this setup is

1

Substituting in A = ¢/272% as previously defined gives immediately

1
2

(1)

1 1
, o\ — i 2 (f) / >
q’v(JItr)l:ljevzl L* ()\) q’v(JItr)l:ljlvlvzl /;é (I)U(f) df 2 —% (I>v(f)df
thereby proving Theorem 1. Analogous to (5), (6), there are two terms in (9), in which the
first is caused by quantization and the second by channel erasures. The choice of encoder
predictor B(f) again weights the two terms. We can interpret ®,(f) = 1/|1 — B(f)|? as the
power spectral density of some wvirtual source v[t] against which B(f) is trying to predict.
Depending on A, which is the severity of erasures relative to the error-free quantization
error, the optimizing virtual source is either spectrally more like s[t] (smaller A) or more
white (larger A). If the virtual source spectrum matches ®4(f) of the real source, then B(f)
implements DPCM and L°(A\) = 1 4+ AX,. If the virtual source spectrum is white, then
B(f) implements PCM and L$°(A) = X, + A. The minimizing virtual source has spectrum

between these, corresponding to B(f) implementing a hybrid between DPCM and PCM.
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